OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20404–20416

Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers

Sanne Sulejmani, Camille Sonnenfeld, Thomas Geernaert, Geert Luyckx, Danny Van Hemelrijck, Pawel Mergo, Waclaw Urbanczyk, Karima Chah, Christophe Caucheteur, Patrice Mégret, Hugo Thienpont, and Francis Berghmans  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20404-20416 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate shear stress sensing with a Bragg grating-based microstructured optical fiber sensor embedded in a single lap adhesive joint. We achieved an unprecedented shear stress sensitivity of 59.8 pm/MPa when the joint is loaded in tension. This corresponds to a shear strain sensitivity of 0.01 pm/µε. We verified these results with 2D and 3D finite element modeling. A comparative FEM study with conventional highly birefringent side-hole and bow-tie fibers shows that our dedicated fiber design yields a fourfold sensitivity improvement.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3940) Instrumentation, measurement, and metrology : Metrology

ToC Category:

Original Manuscript: June 24, 2013
Revised Manuscript: August 9, 2013
Manuscript Accepted: August 9, 2013
Published: August 22, 2013

Sanne Sulejmani, Camille Sonnenfeld, Thomas Geernaert, Geert Luyckx, Danny Van Hemelrijck, Pawel Mergo, Waclaw Urbanczyk, Karima Chah, Christophe Caucheteur, Patrice Mégret, Hugo Thienpont, and Francis Berghmans, "Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers," Opt. Express 21, 20404-20416 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg grating sensors: Recent advancements, industrial applications and market exploitation (Bentham Science Publishers, 2011).
  2. F. Berghmans and T. Geernaert, “Optical fiber point sensors” in Advanced Fiber Optics: Concepts and Technology, L. Thévenaz, Ed. (EPFL Press, 2011) pp. 308–344.
  3. A. Othonos and K. Kalli, Fiber Bragg gratings: Fundamentals and applications in telecommunications and sensing (Artech House, 1999).
  4. G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre bragg gratings: criticism and opportunities for research,” Sensors (Basel)11(1), 384–408 (2011). [CrossRef] [PubMed]
  5. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Strain and temperature characterization of photonic crystal fiber Bragg gratings,” Opt. Lett.30(14), 1785–1787 (2005). [CrossRef] [PubMed]
  6. T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008). [CrossRef]
  7. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett.31(15), 2260–2262 (2006). [CrossRef] [PubMed]
  8. T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Dearieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett.21(1), 6–8 (2009). [CrossRef]
  9. E. Chmielewska, W. Urbańczyk, and W. J. Bock, “Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber,” Appl. Opt.42(31), 6284–6291 (2003). [CrossRef] [PubMed]
  10. H.-M. Kim, T.-H. Kim, B. Kim, and Y. Chung, “Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis,” Appl. Opt.49(20), 3841–3845 (2010). [CrossRef] [PubMed]
  11. www.tekscan.com
  12. www.hbm.com/en/menu/products/strain-gages-accessories/
  13. R. Khandan, S. Noroozi, P. Sewell, and J. Vinney, “The development of laminated composite plate theories: a review,” J. Mater. Sci.47(16), 5901–5910 (2012). [CrossRef]
  14. K. Basler, Strength of Plate Girders in Shear (Lehigh University Institute of Research, 1960).
  15. E. Real, E. Mirambell, and I. Estrada, “Shear response of stainless steel plate girders,” Eng. Struct.29(7), 1626–1640 (2007). [CrossRef]
  16. M. D. Banea and L. F. M. da Silva, ““Adhesively bonded joints in composite materials: An overview,” Proc. Inst. Mech. Eng. L J,” Mater. Des. Appl.223, 1–18 (2009).
  17. S. Benyoucef, A. Tounsi, E. A. Adda Bedia, and S. A. Meftah, “Creep and shrinkage effect on adhesive stresses in RC beams strengthened with composite laminates,” Compos. Sci. Technol.67(6), 933–942 (2007). [CrossRef]
  18. H. Yousef, M. Boukallel, and K. Althoefer, ““Tactile sensing for dexterous in-hand manipulation in robotics—A review,” Sens,” Actuator A-Phys167(2), 171–187 (2011). [CrossRef]
  19. M. I. Tiwana, S. J. Redmond, and N. H. Lovell, ““A review of tactile sensing technologies with applications in biomedical engineering,” Sens,” Actuator A-Phys.179, 17–31 (2012). [CrossRef]
  20. C. Perry, “Plane-shear measurement with strain gages,” Exp. Mech.9(19–N), 22 (1969).
  21. J. W. Naughton and M. Sheplak, “Modern developments in shear-stress measurement,” Prog. Aerosp. Sci.38(6-7), 515–570 (2002). [CrossRef]
  22. K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, ““A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sens,” Actuator A-Phys127(2), 295–301 (2006). [CrossRef]
  23. H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, “Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors,” J. Microelectromech. Syst.17(4), 934–942 (2008). [CrossRef]
  24. K. Sundara-Rajan, A. Bestick, G. I. Rowe, G. K. Klute, W. R. Ledoux, H. C. Wang, and A. V. Mamishev, “An interfacial stress sensor for biomechanical applications,” Meas. Sci. Technol.23(8), 085701 (2012). [CrossRef]
  25. J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett.23(12), 771–773 (2011). [CrossRef]
  26. W.-C. Wang, W. R. Ledoux, B. J. Sangeorzan, and P. G. Reinhall, “A shear and plantar pressure sensor based on fiber-optic bend loss,” J. Rehabil. Res. Dev.42(3), 315–325 (2005). [CrossRef] [PubMed]
  27. S. C. Tjin, R. Suresh, and N. Q. Ngo, “Fiber Bragg grating based shear-force sensor: modeling and testing,” J. Lightwave Technol.22(7), 1728–1733 (2004). [CrossRef]
  28. A. Candiani, W. Margulis, M. Konstantaki, and S. Pissadakis, “Ferrofluid-infiltrated optical fibers for shear-sensing smart pads,” SPIE Newsroom (2012).
  29. W. L. Schulz, E. Udd, M. Morrell, J. M. Seim, I. M. Perez, and A. Trego, ““Health monitoring of an adhesive joint using a multiaxis fiber grating strain sensor system,” in Proc. SPIE 3586,” Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace HardwareIII, 41–52 (1999). [CrossRef]
  30. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003). [CrossRef] [PubMed]
  31. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  32. W. Urbanczyk, T. Martynkien, M. Szpulak, G. Statkiewicz, J. Olszewski, G. Golojuch, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, in Proc. SPIE 6619, Third European Workshop on Optical Fibre Sensors, “Photonic crystal fibers: new opportunities for sensing,” 66190G–66190G (2007).
  33. O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev.2(6), 449–459 (2008). [CrossRef]
  34. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express18(14), 15113–15121 (2010). [CrossRef] [PubMed]
  35. S. Sulejmani, C. Sonnenfeld, T. Geernaert, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, T. Martynkien, G. Satkiewicz-Barabach, J. Olszewski, W. Urbanczyk, C. Caucheteur, K. Chah, P. Mégret, H. Terryn, J. Van Roosbroeck, F. Berghmans, and H. Thienpont, “Control over the pressure sensitivity of Bragg-grating based sensors in highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett.24(6), 527–529 (2012). [CrossRef]
  36. T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in Germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett.20(8), 554–556 (2008). [CrossRef]
  37. T. Geernaert, M. Becker, P. Mergo, T. Nasilowski, J. Wojcik, W. Urbanczyk, M. Rothhardt, C. Chojetzki, H. Bartelt, H. Terryn, F. Berghmans, and H. Thienpont, “Bragg grating inscription in GeO2-doped microstructured optical fibers,” J. Lightwave Technol.28(10), 1459–1467 (2010). [CrossRef]
  38. F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photon. Rev. (2013).
  39. C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors (Basel)11(12), 2566–2579 (2011). [CrossRef] [PubMed]
  40. F. Berghmans, T. Geernaert, S. Sulejmani, H. Thienpont, G. Van Steenberge, B. Van Hoe, P. Dubruel, W. Urbanczyk, P. Mergo, D. J. Webb, K. Kalli, J. Van Roosbroeck, and K. Sugden, “Photonic crystal fiber Bragg grating based sensors: opportunities for applications in healthcare,” in Communications and Photonics Conference and Exhibition, 2011. ACP,” Asia8311, 1–10 (2011).
  41. G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett.21(18), 1290–1292 (2009). [CrossRef]
  42. L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, A. Wang, and J. K. Spelt, “Analytical models of adhesively bonded joints—Part II: Comparative study,” Int. J. Adhes. Adhes.29(3), 331–341 (2009). [CrossRef]
  43. M. Goland and E. Reissner, J. Appl. Mech. Trans. Am. Soc. Eng.66, A17 (1944).
  44. C. M. Lawrence, D. V. Nelson, and E. Udd, “Multiparameter sensing with fiber Bragg gratings,” in Pacific Northwest Fiber Optic Sensor Workshop2872 (1996), 24–31. [CrossRef]
  45. C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech.39(3), 202–209 (1999). [CrossRef]
  46. F. Berghmans, T. Geernaert, M. Napierala, T. Baghdasaryan, C. Sonnenfeld, S. Sulejmani, T. Nasiłowski, P. Mergo, T. Martynkien, W. Urbańczyk, E. Bereś-Pawlik, and H. Thienpont, “Applying optical design methods to the development of application specific photonic crystal fibres,” in Proc. SPIE 8550, Optical Systems Design (2012), 85500B.
  47. S. Sulejmani, C. Sonnenfeld, T. Geernaert, F. Berghmans, H. Thienpont, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, and H. Bartelt, “Towards micro-structured optical fiber sensors for transverse strain sensing in smart composite materials,” in 2011 IEEE Sensors (2011), pp. 109–112.
  48. K. Chah, D. Kinet, M. Wuilpart, P. Mégret, and C. Caucheteur, “Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber,” Opt. Lett.38(4), 594–596 (2013). [CrossRef] [PubMed]
  49. www.3ds.com/products/simulia/portfolio/abaqus/
  50. E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct.13(4), 888–895 (2004). [CrossRef]
  51. www.instron.com
  52. www.fbgs.com
  53. Pliogrip 1000/1040/1060/1080 Acrylic Adhesive System (Ashland Performance Materials) – Technical datasheet
  54. DP-8005 (3M Scotch Weld) – Technical Datasheet.
  55. A. M. G. Pinto, A. G. Magalhães, R. D. S. G. Campilho, M. F. S. F. de Moura, and A. P. M. Baptista, “Single-lap joints of similar and dissimilar adherends bonded with an Acrylic adhesive,” J. Adhes.85(6), 351–376 (2009). [CrossRef]
  56. M. S. Muller, T. C. Buck, H. J. El-Khozondar, and A. W. Koch, “Shear strain influence on fiber Bragg grating measurement systems,” J. Lightwave Technol.27(23), 5223–5229 (2009). [CrossRef]
  57. W. Urbanczyk, E. Chmielewska, and W. J. Bock, “Measurements of temperature and strain sensitivities of a two-mode Bragg grating imprinted in a bow-tie fibre,” Meas. Sci. Technol.12(7), 800–804 (2001). [CrossRef]
  58. R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol.11(3), 240–254 (2005). [CrossRef]
  59. J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett.10(6), 857–859 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited