OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20620–20625

Formation of microcavity polaritons in ZnO nanoparticles

Xiaoze Liu, David Goldberg, and Vinod M. Menon  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 20620-20625 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the formation of microcavity polaritons in a dielectric microcavity embedded with solution processed ZnO nanoparticles. Evidence of strong coupling between the excitons and cavity photons is demonstrated via anticrossing in the dispersion of the polariton states. At low temperatures (<150K), multiple polariton states arising due to coupling between different excitonic states and the cavity mode is observed. Rabi splitting of ~90 meV is shown to persist even at room temperature in the ZnO – dielectric microcavity.

© 2013 OSA

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Optics at Surfaces

Original Manuscript: July 16, 2013
Revised Manuscript: August 12, 2013
Manuscript Accepted: August 12, 2013
Published: August 27, 2013

Xiaoze Liu, David Goldberg, and Vinod M. Menon, "Formation of microcavity polaritons in ZnO nanoparticles," Opt. Express 21, 20620-20625 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  2. H. Deng and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010). [CrossRef]
  3. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  4. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010). [CrossRef]
  5. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002). [CrossRef]
  6. S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008). [CrossRef]
  7. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser,” Phys. Rev. Lett.107(6), 066405 (2011). [CrossRef] [PubMed]
  8. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007). [CrossRef] [PubMed]
  9. U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005). [CrossRef]
  10. L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012). [CrossRef]
  11. T.-C. Lu, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, Y.-C. Wu, W.-F. Hsieh, and H. Deng, “Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity,” Opt. Express20(5), 5530–5537 (2012). [CrossRef] [PubMed]
  12. A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express20(11), 11830–11837 (2012). [CrossRef] [PubMed]
  13. F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013). [CrossRef] [PubMed]
  14. W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997). [CrossRef]
  15. M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009). [CrossRef]
  16. Y. S. Park and J. R. Schneider, “Index of Refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968). [CrossRef]
  17. Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, “Exciton Spectrum of ZnO,” Phys. Rev.143(2), 512–519 (1966). [CrossRef]
  18. W. Y. Liang and A. D. Yoffe, “Transmission Spectra of ZnO Single Crystals,” Phys. Rev. Lett.20(2), 59–62 (1968). [CrossRef]
  19. J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys.85(11), 7884–7887 (1999). [CrossRef]
  20. G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, “Size dependent carrier recombination in ZnO nanocrystals,” Appl. Phys. Lett.97(13), 131909 (2010). [CrossRef]
  21. J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-F. Hsieh, S.-C. Wang, and H. Deng, “Characteristics of exciton-polaritons in ZnO-based hybrid microcavities,” Opt. Express19(5), 4101–4112 (2011). [CrossRef] [PubMed]
  22. F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited