OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 20990–20998

Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser

Rui Zhang, Hongqiang Li, Peixiong Zhang, Yin Hang, and Jianqiu Xu  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20990-20998 (2013)
http://dx.doi.org/10.1364/OE.21.020990


View Full Text Article

Enhanced HTML    Acrobat PDF (1964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Efficient continuous-wave laser emission at 1856 nm from a Tm,Mg:LiNbO3 crystal slab with high Tm3+ doping concentration is reported. A maximum output power of 2.62 W is realized with a slope efficiency of 19.6% and the beam quality factor M2 of 1.7 at room temperature. We believe that this is the first demonstration of watt-level laser operation in Tm,Mg:LiNbO3 crystal and the output power is four orders of magnitude higher than that reported previously in Tm-doped LiNbO3 crystal. Performance degradation due to the photorefractive effect under high intensity 1856 nm laser is not observed thanks to the co-doping of magnesium ions. Quantitative analysis about the long-term photorefractive effect is also provided. Multi-wavelength laser operation is realized by using different narrow-band output couplers. This demonstration opens up a viable pathway towards 2-μm integrated optic devices for achieving laser oscillation, electro-optic and nonlinear optical effects within just one sample simultaneously.

© 2013 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.3130) Materials : Integrated optics materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 7, 2013
Manuscript Accepted: August 12, 2013
Published: August 30, 2013

Citation
Rui Zhang, Hongqiang Li, Peixiong Zhang, Yin Hang, and Jianqiu Xu, "Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser," Opt. Express 21, 20990-20998 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-20990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys.56(3), 363–429 (1993). [CrossRef]
  2. A. Donaldson, “Candidate materials and technologies for integrated optics: fast and efficient electro-optic modulation,” J. Phys. D Appl. Phys.24(6), 785–802 (1991). [CrossRef]
  3. A. D' Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, “Lithium niobate integrated optical devices,” IEEE 3rd Transparent Optical Networks Conference, 131–134, June 18–21, 2001, Cracow, Australia. [CrossRef]
  4. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–437 (1993). [CrossRef]
  5. L. F. Johnson and A. A. Ballman, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969). [CrossRef]
  6. E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991). [CrossRef]
  7. J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett.8(2), 209–211 (1996). [CrossRef]
  8. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  9. T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, and S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. (Phila.)5(11), 1280–1290 (2012). [CrossRef] [PubMed]
  10. T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992). [CrossRef]
  11. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser & Photon. Rev.4(1), 21–41 (2010). [CrossRef]
  12. J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium doped 2 μm germanate fiber laser,” IEEE Photon. Technol. Lett.18(2), 334–336 (2006). [CrossRef]
  13. X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
  14. X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express17(17), 14895–14901 (2009). [CrossRef] [PubMed]
  15. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett.15(9), 486–488 (1990). [CrossRef] [PubMed]
  16. L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B75(4-5), 457–461 (2002). [CrossRef]
  17. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron.33(9), 1592–1600 (1997). [CrossRef]
  18. E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett.86(16), 161119 (2005). [CrossRef]
  19. E. Lallier, J. P. Pocholle, M. Papuchon, M. P. DeMicheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, “Nd:MgO:LiNbO3 channel waveguide laser devices,” IEEE J. Quantum Electron.27(3), 618–625 (1991). [CrossRef]
  20. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000). [CrossRef]
  21. S. N. Bagaev, S. M. Vatnik, A. P. Maiorov, A. A. Pavlyuk, and D. V. Plakushchev, “The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals,” Quantum Electron.30(4), 310–314 (2000). [CrossRef]
  22. L. Nunez and F. Cusso, “Polarized absorption and energy levels of LiNbO3:Tm and LiNbO3(MgO):Tm,” J. Phys. Condens. Matter5(30), 5301–5312 (1993). [CrossRef]
  23. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992). [CrossRef]
  24. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  25. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited