OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21162–21175

Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships

C. Goyens, C. Jamet, and K. G. Ruddick  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21162-21175 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The present study provides an extensive overview of red and near infra-red (NIR) spectral relationships found in the literature and used to constrain red or NIR-modeling schemes in current atmospheric correction (AC) algorithms with the aim to improve water-leaving reflectance retrievals, ρw(λ), in turbid waters. However, most of these spectral relationships have been developed with restricted datasets and, subsequently, may not be globally valid, explaining the need of an accurate validation exercise. Spectral relationships are validated here with turbid in situ data for ρw(λ). Functions estimating ρw(λ) in the red were only valid for moderately turbid waters (ρw(λNIR) < 3.10−3). In contrast, bounding equations used to limit ρw(667) retrievals according to the water signal at 555 nm, appeared to be valid for all turbidity ranges presented in the in situ dataset. In the NIR region of the spectrum, the constant NIR reflectance ratio suggested by Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167–1179), was valid for moderately to very turbid waters (ρw(λNIR) < 10−2) while the polynomial function, initially developed by Wang et al. (2012) (Opt. Express 20, 741–753) with remote sensing reflectances over the Western Pacific, was also valid for extremely turbid waters (ρw(λNIR) > 10−2). The results of this study suggest to use the red bounding equations and the polynomial NIR function to constrain red or NIR-modeling schemes in AC processes with the aim to improve ρw(λ) retrievals where current AC algorithms fail.

© 2013 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(010.1690) Atmospheric and oceanic optics : Color

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 8, 2013
Revised Manuscript: August 12, 2013
Manuscript Accepted: August 13, 2013
Published: September 3, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

C. Goyens, C. Jamet, and K. G. Ruddick, "Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships," Opt. Express 21, 21162-21175 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preminilary algorithm,” Appl. Opt.33, 443–452 (1994). [CrossRef] [PubMed]
  2. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt.17, 1631–1636 (1978). [CrossRef] [PubMed]
  3. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: The black pixel assumption,” Appl. Opt.39(21), 3582–3591 (2000). [CrossRef]
  4. R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in SeaW-iFS Postlaunch Technical Report Series, Volume 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 51–59 (2003).
  5. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimations of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express18(7), 7521–7527 (2010). [CrossRef] [PubMed]
  6. C. Jamet, S. Thiria, C. Moulin, and M. Crepon, “Use of neuro-variational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery,” J. Atmos. Ocean. Tech.22(4), 460–464 (2005). [CrossRef]
  7. T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007). [CrossRef]
  8. J. Brajard, R. Santer, M. Crepon, and S. Thiria, “Atmospheric correction of MERIS data for case 2 waters using neuro-variational inversion,” Remote Sens. Environ.126, 51–61 (2012). [CrossRef]
  9. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113, 635–644 (2009). [CrossRef]
  10. R. C. Smith and W. H. Wilson, “Ship and satellite bio-optical research in the Calofornia Bight,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 281–294 (1980).
  11. R. W. Austin and T. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 239–256 (1980).
  12. B. Sturm, “The atmospheric correction of remotely sensed data and the quantitative determination of suspended matter in marine water surface layers,” in Remote Sensing in Meteorology, Oceanography and Hydrology, A. P. Cracknel, eds., (Chister, UK: Ellis Horwood), pp. 163–197 (1981).
  13. B. Sturm, “Selected topics of coastal zone color scanner (CZCS) data evaluation,” in Remote Sensing Applications in Marine Science and Technology, A. P. Cracknel, eds., (Dordrecht, The Netherlands: D. Reidel), pp. 137–168 (1983). [CrossRef]
  14. M. Viollier and B. Sturm, “CZCS data analysis in turbid coastal water,” J. Geophys. Res.89, 4977–4985 (1984). [CrossRef]
  15. A. Bricaud and A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: Use of a reflectance model,” Oceanol. Acta33–50N.SP, (1987).
  16. B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and M. Turner, “OCEAN code: the complete set of algorithms and models for the level 2 processing of European CZCS historical data, ” Int. J. Remote Sens.20(7), 1219–1248 (1999). [CrossRef]
  17. J. M. Nicolas, P. Y. Deschamps, H. Loisel, and C. Moulin, ”POLDER-2: Ocean Color Atmospheric correction Algorithms, “Version 1.1. Algorithm Theoretical Basis Document, LOA, pp.17 (2005).
  18. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt.39, 897–912 (2000). [CrossRef]
  19. K. G. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51, 1167–1179 (2006). [CrossRef]
  20. M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western pacific region,” Opt. Express20, 741–753 (2012). [CrossRef] [PubMed]
  21. Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the Quasi-Analytical Algorithm (QAA v5),” available at: http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf (2009).
  22. C. Goyens, C. Jamet, and K. Ruddick, “Spectral relationships for atmospheric correction. II. Improving the NASA standard and MUMM near infra-red modeling schemes, ” accepted for publication in Opt. Express (2013).
  23. M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ.115, 1617–1631 (2011). [CrossRef]
  24. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22, 709–722 (1977). [CrossRef]
  25. B. Sturm, G. Maracci, P. Schlittenhardt, C. Ferrari, and L. Alberotanza, “Chlorophyll-a and total suspended matter concentration in the North Adriatic Sea determined from Nimbus-7 CZCS, paper presented at the Statutory Meeting” Int. Counc. for Explor. of the Sea, Woods Hole, Mass:, Oct. 6–12, (1981).
  26. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35, 4850–4862 (1996). [CrossRef] [PubMed]
  27. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt.38, 7442–7455 (1999). [CrossRef]
  28. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65 mm to 2.5 mm spectral range,” Appl. Opt.32, 3531–3540 (1993). [CrossRef] [PubMed]
  29. W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113, 1587–1597 (2009). [CrossRef]
  30. M. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114, c10011 (2009). [CrossRef]
  31. M. Wang, J. Ahn, L. Jiang, W. Shi, S. Son, Y. Park, and J. Ruy, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express21(3), 3835–3849 (2013). [CrossRef] [PubMed]
  32. B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114, 854–866 (2010). [CrossRef]
  33. H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.56, 1532–1536 (2009).
  34. V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac, and A. Gardel, “Seasonal and inter-annual (1998–2010) variability of the suspended particulate matter as retrieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res.64, 1750–1754 (2011).
  35. D. Doxaran, J. M. Froidefond, and P. Castaing, “Remote-Sensing reflectance of turbid sediment-dominated waters,” Appl. Opt.42(15), 2623–2634 (2003). [CrossRef] [PubMed]
  36. D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships and modeling,” Appl. Opt.45(10), 2310–2324 (2006). [CrossRef] [PubMed]
  37. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93, 10909–10924 (1988). [CrossRef]
  38. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res.103, 31033–31044 (1998). [CrossRef]
  39. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res.104, 5403–5422 (1999). [CrossRef]
  40. R. W. Gould, R. A. Arone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt.38(12), 2377–2383 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited