OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21628–21638

A chip-scale, telecommunications-band frequency conversion interface for quantum emitters

Imad Agha, Serkan Ates, Marcelo Davanço, and Kartik Srinivasan  »View Author Affiliations

Optics Express, Vol. 21, Issue 18, pp. 21628-21638 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2967 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ −60 dB at low continuous wave input pump powers (< 50 mW). Finite element simulations and the split-step Fourier method indicate that increased input powers of ≈10 W (produced by amplified nanosecond pulses, for example) will result in a conversion efficiency > 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Quantum Optics

Original Manuscript: June 27, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 24, 2013
Published: September 6, 2013

Imad Agha, Serkan Ates, Marcelo Davanço, and Kartik Srinivasan, "A chip-scale, telecommunications-band frequency conversion interface for quantum emitters," Opt. Express 21, 21628-21638 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Michler, ed., Single Semiconductor Quantum Dots(Springer Verlag, Berlin, 2009). [CrossRef]
  2. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000). [CrossRef] [PubMed]
  3. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004). [CrossRef] [PubMed]
  4. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89, 187901 (2002). [CrossRef] [PubMed]
  5. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
  6. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photonics3, 687–695 (2009). [CrossRef]
  7. C. Simon, M. Afzelius, J. Appel, A. Boyer de La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)”,” European Physical Journal D58, 1–22 (2010). [CrossRef]
  8. P. Kumar, “Quantum Frequency-Conversion,” Opt. Lett.15, 1476–1478 (1990). [CrossRef] [PubMed]
  9. M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Physics Today65, 32–37 (2012). [CrossRef]
  10. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nature Photonics4, 786–791 (2010). [CrossRef]
  11. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012). [CrossRef] [PubMed]
  12. S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot,” Phys. Rev. Lett.109, 147405 (2012). [CrossRef] [PubMed]
  13. K. de Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012). [CrossRef] [PubMed]
  14. C. McKinstrie, J. Harvey, S. Radic, and M. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005). [CrossRef] [PubMed]
  15. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010). [CrossRef] [PubMed]
  16. I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in SiNx waveguides,” Opt. Lett.37, 2997–2999 (2012). [CrossRef] [PubMed]
  17. K. Uesaka, K. Kin-Yip, M.E. Marhic, and L. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quan. Elec.8, 560–568 (2002). [CrossRef]
  18. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16, 12987 (2008). [CrossRef] [PubMed]
  19. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics4, 37–40 (2010). [CrossRef]
  20. D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010). [CrossRef]
  21. H. J. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector bragg scattering in a birefringent photonic crystal fiber,” IEEE Photonics Tech. Lett.23, 109–111 (2011). [CrossRef]
  22. A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J. Eggleton, “High-efficiency frequency conversion in the single-photon regime,” Opt. Lett.38, 947–949 (2013). [CrossRef] [PubMed]
  23. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photonics5, 770–776 (2011). [CrossRef]
  24. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011). [CrossRef] [PubMed]
  25. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011). [CrossRef] [PubMed]
  26. S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Scientific Reports3, 1397 (2013).
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Amsterdam, 2007).
  28. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006). [CrossRef] [PubMed]
  29. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604 (2007). [CrossRef] [PubMed]
  30. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics4, 557–560 (2010). [CrossRef]
  31. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics4, 561–564 (2010). [CrossRef]
  32. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37, 1331 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited