OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 21714–21727

Homogenization of three-dimensional metamaterial objects and validation by a fast surface-integral equation solver

Xing-Xiang Liu, Jackson W. Massey, Ming-Feng Wu, Kristopher T. Kim, Robert A. Shore, Ali E. Yılmaz, and Andrea Alù  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 21714-21727 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1538 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A homogenization model is applied to describe the wave interaction with finite three-dimensional metamaterial objects composed of periodic arrays of magnetodielectric spheres and is validated with full-wave numerical simulations. The homogenization is based on a dipolar model of the inclusions, which is shown to hold even in the case of densely packed arrays once weak forms of spatial dispersion and the full dynamic array coupling are taken into account. The numerical simulations are based on a fast surface-integral equation solver that enables the analysis of scattering from complex piecewise homogeneous objects. We validate the homogenization model by considering electrically large disk- and cube-shaped arrays and quantify the accuracy of the transition from an array of spheres to a homogeneous object as a function of the array size. Simulation results show that the fields scattered from large arrays with up to one thousand spheres and equivalent homogeneous objects agree well, not only far away from the arrays but also near them.

© 2013 OSA

OCIS Codes
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: May 31, 2013
Revised Manuscript: August 31, 2013
Manuscript Accepted: September 2, 2013
Published: September 6, 2013

Xing-Xiang Liu, Jackson W. Massey, Ming-Feng Wu, Kristopher T. Kim, Robert A. Shore, Ali E. Yılmaz, and Andrea Alù, "Homogenization of three-dimensional metamaterial objects and validation by a fast surface-integral equation solver," Opt. Express 21, 21714-21727 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag.51(7), 1516–1529 (2003). [CrossRef]
  2. C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag.50(5), 25–39 (2008). [CrossRef]
  3. E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011). [CrossRef] [PubMed]
  4. X.-X. Liu and A. Alù, “Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B82(14), 144305 (2010). [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  6. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  7. X.-X. Liu and A. Alù, “Limitations and potentials of metamaterial lenses,” J. Nanophotonics5(1), 053509 (2011). [CrossRef]
  8. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9(2), 129–132 (2010). [CrossRef] [PubMed]
  9. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A203, 443–445 (1904).
  10. M. Born and K. Huang, Dynamic Theory of Crystal Lattices (Oxford University 1998).
  11. C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007). [CrossRef]
  12. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002). [CrossRef]
  13. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004). [CrossRef] [PubMed]
  14. L. Landau and E. Lifschitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).
  15. C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt.13(1), 013001 (2011). [CrossRef]
  16. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005). [CrossRef] [PubMed]
  17. P. A. Belov and C. R. Simovski, “Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(2), 026615 (2005). [CrossRef] [PubMed]
  18. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials (Amst.)1(2), 62–80 (2007). [CrossRef]
  19. R. A. Shore and A. Yaghjian, “Traveling waves on two-and three-dimensional periodic arrays of lossless scatterers,” Radio Sci.42(6), RS6S21 (2007). [CrossRef]
  20. M. G. Silveirinha, “Generalized Lorentz-Lorenz formulas for microstructured materials,” Phys. Rev. B76(24), 245117 (2007). [CrossRef]
  21. C. Fietz and G. Shvets, “Current-driven metamaterial homogenization,” Physica B405(14), 2930–2934 (2010). [CrossRef]
  22. A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011). [CrossRef]
  23. A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B.83(8), 081102 (2011). [CrossRef]
  24. X.-X. Liu and A. Alù, “Homogenization of quasi-isotropic metamaterials composed of dense arrays of magnetodielectric spheres,” Metamaterials (Amst.)5(2-3), 56–63 (2011). [CrossRef]
  25. D. L. Smith, L. N. Medgyesi-Mitschang, and D. W. Forester, “Surface integral equation formulations for left-handed materials,” Prog. Electromagnetics Res.51, 27–48 (2005). [CrossRef]
  26. P. Yla-Oijala, Ö. Ergül, L. Gürel, and M. Taskinen, “Efficient surface integral equation methods for the analysis of complex metamaterial structures,” in Proceedings of European conference on antennas and propagation (EuCAP), 1560- 1564, Berlin, Germany (2009).
  27. J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express18(15), 15876–15886 (2010). [CrossRef] [PubMed]
  28. M.-F. Wu and A. E. Yilmaz, “A well-conditioned multiple-grid AIM accelerated PMCHWT solver for composite structures,” USNC/URSI Rad. Sci. Meet. (2010).
  29. M.-F. Wu, G. Kaur, and A. E. Yilmaz, “A multiple-grid adaptive integral method for multi-region problems,” IEEE Trans. Antenn. Propag.58(5), 1601–1613 (2010). [CrossRef]
  30. M.-F. Wu, X.-X. Liu, A. Alu, and A. E. Yilmaz, “A fast surface integral equation solver for composite structures with metamaterial regions,” Proc. IEEE Antennas and Propagation Soc. Int. Symp. 2688–2691 (2011).
  31. A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B78(8), 085112 (2008). [CrossRef]
  32. F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical fano resonance,” Nat. Nanotechnol.8(2), 95–99 (2013). [CrossRef] [PubMed]
  33. X.-X. Liu, D. A. Powell, and A. Alù, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011). [CrossRef]
  34. X.-X. Liu and A. Alù, “First-principle homogenization of magnetodielectric metamaterial arrays,” Proc. IEEE Antennas and Propagation Soc. Int. Symp. 1522–1525 (2011).
  35. X.-X. Liu and A. Alù, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach,” Phys. Rev. B87(23), 235136 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (830 KB)     
» Media 2: MPG (932 KB)     
» Media 3: MPG (796 KB)     
» Media 4: MPG (806 KB)     
» Media 5: MPG (890 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited