OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 21790–21799

Photorefractive inhibition of second harmonic generation in periodically poled MgO doped LiNbO3 waveguide

Guohui Li, Yanxia Cui, and Jing Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 21790-21799 (2013)
http://dx.doi.org/10.1364/OE.21.021790


View Full Text Article

Enhanced HTML    Acrobat PDF (992 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The inhibition of high power second-harmonic generation (SHG) in a periodically poled MgO doped LiNbO3 (PPMgLN) waveguide operating at near the room temperature has been interpreted by systematically investigating the SHG process based on the coupled mode equations in combination with the photorefraction and the temperature nonuniformities. The simulation results show that significant refractive index nonuniformities are induced by the photorefractive effect along the irradiated zone while those induced by the thermal effect are very minor. Therefore, the photorefractive effect instead of the thermal effect is the main factor that inhibits the SHG conversion efficiency. In addition, comparison of PPMgLN waveguides with different transverse dimensions shows that the waveguides with larger transverse dimension is advantageous in high power SHG since the photorefractive effect is weaker.

© 2013 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(190.2620) Nonlinear optics : Harmonic generation and mixing
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 11, 2013
Revised Manuscript: August 24, 2013
Manuscript Accepted: August 27, 2013
Published: September 9, 2013

Citation
Guohui Li, Yanxia Cui, and Jing Wang, "Photorefractive inhibition of second harmonic generation in periodically poled MgO doped LiNbO3 waveguide," Opt. Express 21, 21790-21799 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-21790


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Sakai, Y. Koyata, and Y. Hirano, “Blue light generation in a ridge waveguide MgO:LiNbO3 crystal pumped by a fiber Bragg grating stabilized laser diode,” Opt. Lett.32(16), 2342–2344 (2007). [CrossRef] [PubMed]
  2. A. Jechow, M. Schedel, S. Stry, J. Sacher, and R. Menzel, “Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm,” Opt. Lett.32(20), 3035–3037 (2007). [CrossRef] [PubMed]
  3. G. Li, H. Jiang, and X. Xu, “Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides,” Chin. Phys. B20(6), 064201 (2011). [CrossRef]
  4. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett.27(1), 43–45 (2002). [CrossRef] [PubMed]
  5. K. Sakai, Y. Koyata, and Y. Hirano, “Planar-waveguide quasi-phase-matched second-harmonic-generation device in Y-cut MgO-doped LiNbO3.,” Opt. Lett.31(21), 3134–3136 (2006). [CrossRef] [PubMed]
  6. J. Sun, Y. Gan, and C. Xu, “Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide,” Opt. Lett.36(4), 549–551 (2011). [CrossRef] [PubMed]
  7. J. Sun and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO: LiNbO3 ridge waveguides,” Opt. Lett.37(11), 2028–2030 (2012). [CrossRef] [PubMed]
  8. D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a pp MgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B109(1), 33–42 (2012). [CrossRef]
  9. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett.87(13), 131101 (2005). [CrossRef]
  10. M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater.16(1-2), 111–117 (2001). [CrossRef]
  11. M. Taya, M. C. Bashaw, and M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett.21(12), 857–859 (1996). [CrossRef] [PubMed]
  12. B. Sturman, M. Aguilar, F. Agulló-López, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled ferroelectrics,” J. Opt. Soc. Am. B14(10), 2641–2649 (1997). [CrossRef]
  13. Y. Chen, S. W. Liu, D. Wang, T. Chen, and M. Xiao, “Measurement of laser-induced refractive index change of inverted ferroelectric domain LiNbO3.,” Appl. Opt.46(31), 7693–7696 (2007). [CrossRef] [PubMed]
  14. K. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett.78(14), 1970–1972 (2001). [CrossRef]
  15. M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.78(21), 3163–3165 (2001). [CrossRef]
  16. T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett.40(21), 1359–1361 (2004). [CrossRef]
  17. J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE6875, 687516, 687516-8 (2008). [CrossRef]
  18. B. Chen, J. F. Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett.89(4), 043510 (2006). [CrossRef]
  19. L. Pálfalvi, G. Almási, J. Hebling, Á. Péter, and K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett.80(13), 2245–2247 (2002). [CrossRef]
  20. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008). [CrossRef]
  21. D. Eimerl, “Thermal aspects of high-average-power electrooptic switches,” IEEE J. Quantum Electron.23(12), 2238–2251 (1987). [CrossRef]
  22. P. F. Hu, T. C. Chong, L. P. Shi, and W. X. Hou, “Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates,” Opt. Quantum Electron.31(4), 337–349 (1999). [CrossRef]
  23. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009). [CrossRef]
  24. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988). [CrossRef]
  25. J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010). [CrossRef]
  26. F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, “Beam waist changes in lithium niobate during Z scan measurement,” J. Appl. Phys.78(2), 1373–1375 (1995). [CrossRef]
  27. S. M. Kostritskii and M. Aillerie, “Z-scan study of nonlinear absorption in reduced LiNbO3 crystals,” J. Appl. Phys.111(10), 103504 (2012). [CrossRef]
  28. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of Li/Nb and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000). [CrossRef]
  29. S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys.105(8), 083102 (2009). [CrossRef]
  30. R. W. Boyd, Nonlinear Optics, (Academic Press, 2008), Chap. 4.
  31. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992). [CrossRef]
  32. A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express19(23), 23029–23035 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited