OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 21847–21856

Frequency resolved transverse mode instability in rod fiber amplifiers

Mette Marie Johansen, Marko Laurila, Martin D. Maack, Danny Noordegraaf, Christian Jakobsen, Thomas Tanggaard Alkeskjold, and Jesper Lægsgaard  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 21847-21856 (2013)
http://dx.doi.org/10.1364/OE.21.021847


View Full Text Article

Enhanced HTML    Acrobat PDF (11075 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output dynamics, and allowing a simple method for determining TMI threshold based on standard deviation. The TMI frequency component is seen to appear on top of system noise that may trigger the onset. A decay of TMI threshold with test number is identified, but the threshold is fully recovered between testing to the level of the pristine fiber by thermal annealing the fiber output end to 300°C for 2 h.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.6810) Lasers and laser optics : Thermal effects
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 7, 2013
Revised Manuscript: August 27, 2013
Manuscript Accepted: September 4, 2013
Published: September 10, 2013

Citation
Mette Marie Johansen, Marko Laurila, Martin D. Maack, Danny Noordegraaf, Christian Jakobsen, Thomas Tanggaard Alkeskjold, and Jesper Lægsgaard, "Frequency resolved transverse mode instability in rod fiber amplifiers," Opt. Express 21, 21847-21856 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-21847


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  2. T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier,” Opt. Express19(8), 7398–7409 (2011). [CrossRef] [PubMed]
  3. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express20(5), 5742–5753 (2012). [CrossRef] [PubMed]
  4. C.-H. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CTuBB3.
  5. F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express18(26), 26834–26842 (2010). [CrossRef] [PubMed]
  6. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001). [CrossRef]
  7. M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high power cw fiber lasers,” Proc. SPIE7195, 71951U, 71951U-11 (2009). [CrossRef]
  8. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express11(22), 2982–2990 (2003). [CrossRef] [PubMed]
  9. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011). [CrossRef] [PubMed]
  10. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011). [CrossRef] [PubMed]
  11. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012). [CrossRef] [PubMed]
  12. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012). [CrossRef] [PubMed]
  13. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett.36(23), 4572–4574 (2011). [CrossRef] [PubMed]
  14. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011). [CrossRef] [PubMed]
  15. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermally induced mode coupling in rare-earth doped fiber amplifiers,” Opt. Lett.37(12), 2382–2384 (2012). [CrossRef] [PubMed]
  16. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express21(2), 1944–1971 (2013). [CrossRef] [PubMed]
  17. M. M. Johansen, K. R. Hansen, M. Laurila, T. T. Alkeskjold, and J. Lægsgaard, “Estimating modal instability threshold for photonic crystal rod fiber amplifiers,” Opt. Express21(13), 15409–15417 (2013). [CrossRef] [PubMed]
  18. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express21(3), 2642–2656 (2013). [CrossRef] [PubMed]
  19. NKT Photonics A/S, “Ytterbium Doped Double Clad Fibers With Large Mode Area,” < http://nktphotonics.com/side5319.html > (2 January 2013). http://nktphotonics.com/side5319.html .
  20. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express15(4), 1606–1611 (2007). [CrossRef] [PubMed]
  21. M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, and J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers,” Opt. Express17(15), 12588–12593 (2009). [CrossRef] [PubMed]
  22. M. Leich, S. Jetschke, S. Unger, and J. Kirchhof, “Temperature influence on the photodarkening kinetics in Yb-doped silica fibers,” J. Opt. Soc. Am. B28(1), 65–68 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited