OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 21871–21878

Coupling of air/metal and substrate/metal surface plasmon polaritons in Au slit arrays fabricated on quartz substrate

S. H. Kim, C. M. Lee, K. J. Ahn, and K. J. Yee  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 21871-21878 (2013)
http://dx.doi.org/10.1364/OE.21.021871


View Full Text Article

Enhanced HTML    Acrobat PDF (2239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the coupling of the air/metal mode and the substrate/metal mode surface plasmon polaritons in one-dimensional metallic slit arrays fabricated on a dielectric substrate. Anti-crossing is exhibited at an incident angle where the two independent modes can be resonantly excited at a specific wavelength. The size of the anti-crossing gap was measured while changing the metal thickness.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 4, 2013
Revised Manuscript: August 15, 2013
Manuscript Accepted: August 31, 2013
Published: September 10, 2013

Citation
S. H. Kim, C. M. Lee, K. J. Ahn, and K. J. Yee, "Coupling of air/metal and substrate/metal surface plasmon polaritons in Au slit arrays fabricated on quartz substrate," Opt. Express 21, 21871-21878 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-21871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. E. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  4. I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B65(16), 165432 (2002). [CrossRef]
  5. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express13(12), 4485–4491 (2005). [CrossRef] [PubMed]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  7. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002). [CrossRef]
  8. Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett.83(15), 3021–3023 (2003). [CrossRef]
  9. J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999). [CrossRef]
  10. J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. Park, and D. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B75(3), 035414 (2007). [CrossRef]
  11. K. G. Lee and Q. H. Park, “Coupling of Surface Plasmon Polaritons and Light in Metallic Nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005). [CrossRef] [PubMed]
  12. P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent Exciton-Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” Phys. Rev. Lett.101(11), 116801 (2008). [CrossRef] [PubMed]
  13. Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett.88(5), 057403 (2002). [CrossRef] [PubMed]
  14. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B70(4), 045421 (2004). [CrossRef]
  15. T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B Condens. Matter32(10), 6238–6245 (1985). [CrossRef] [PubMed]
  16. R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett.94(14), 141104 (2009). [CrossRef]
  17. F. Liu, Y. Li, R. Wan, Y. Huang, X. Feng, and W. Zhang, “Hybrid Coupling Between Long-Range Surface Plasmon Polariton Mode and Dielectric Waveguide Mode,” J. Lightwave Technol.29(9), 1265–1273 (2011). [CrossRef]
  18. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  19. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir20(12), 4813–4815 (2004). [CrossRef] [PubMed]
  20. J. Frischeisen, Q. Niu, A. Abdellah, J. B. Kinzel, R. Gehlhaar, G. Scarpa, C. Adachi, P. Lugli, and W. Brütting, “Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings,” Opt. Express19(S1Suppl 1), A7–A19 (2011). [CrossRef] [PubMed]
  21. J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, and J. H. Kang, “Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett.88(7), 071114 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited