OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22023–22033

All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle

Yusuke Miida and Yuji Matsuura  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22023-22033 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2229 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-optical 3D photoacoustic imaging probe that consists of an optical fiber probe for ultrasound detection and a bundle of hollow optical fibers for excitation of photoacoustic waves was developed. The fiber probe for ultrasound is based on a single-mode optical fiber with a thin polymer film attached to the output end surface that works as a Fabry Perot etalon. The input end of the hollow fiber bundle is aligned so that each fiber in the bundle is sequentially excited. A thin and flexible probe can be obtained because the probe system does not have a scanning mechanism at the distal end.

© 2013 OSA

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(110.7170) Imaging systems : Ultrasound
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Imaging Systems

Original Manuscript: July 22, 2013
Revised Manuscript: September 4, 2013
Manuscript Accepted: September 4, 2013
Published: September 11, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Yusuke Miida and Yuji Matsuura, "All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle," Opt. Express 21, 22023-22033 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett.34(10), 1591–1593 (2009). [CrossRef] [PubMed]
  2. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007). [CrossRef] [PubMed]
  3. B. Wang and S. Emelianov, “Thermal intravascular photoacoustic imaging,” Biomed. Opt. Express2(11), 3072–3078 (2011). [CrossRef] [PubMed]
  4. J. M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express20(21), 23944–23953 (2012). [CrossRef] [PubMed]
  5. J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control47(1), 160–169 (2000). [CrossRef] [PubMed]
  6. E. A. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE6437, 64370S (2007). [CrossRef]
  7. S. W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett.93(11), 113501 (2008). [CrossRef] [PubMed]
  8. H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010). [CrossRef] [PubMed]
  9. C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 957–965 (2007). [CrossRef] [PubMed]
  10. B. Y. Hsieh, S. L. Chen, T. Ling, L. J. Guo, and P. C. Li, “All-optical scanhead for ultrasound and photoacoustic dual-modality imaging,” Opt. Express20(2), 1588–1596 (2012). [CrossRef] [PubMed]
  11. P. C. Beard, F. Pérennès, E. Draguioti, and T. N. Mills, “Optical fiber photoacoustic-photothermal probe,” Opt. Lett.23(15), 1235–1237 (1998). [CrossRef] [PubMed]
  12. P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control47(1), 256–264 (2000). [CrossRef] [PubMed]
  13. E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE7899, 78991F (2011). [CrossRef]
  14. P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control46(6), 1575–1582 (1999). [CrossRef] [PubMed]
  15. T. K. Stanton, R. G. Pridham, W. V. McCollough, and M. P. Sanguinetti, “On fiber‐optic hydrophone noise ‐ equivalent pressure,” J. Acoust. Soc. Am.66(6), 1893–1894 (1979). [CrossRef]
  16. K. Iwai, Y. W. Shi, K. Nito, Y. Matsuura, T. Kasai, M. Miyagi, S. Saito, Y. Arai, N. Ioritani, Y. Okagami, M. Nemec, J. Sulc, H. Jelinkova, M. Zavoral, O. Kohler, and P. Drlik, “Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap,” Appl. Opt.42(13), 2431–2435 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited