OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22034–22042

A tunable notch filter using microelectromechanical microring with gap-variable busline coupler

Taro Ikeda and Kazuhiro Hane  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22034-22042 (2013)
http://dx.doi.org/10.1364/OE.21.022034


View Full Text Article

Enhanced HTML    Acrobat PDF (1945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A microelectromechanical tunable notch filter using silicon-photonic freestanding waveguides is proposed, and the basic characteristics are experimentally investigated. The proposed filter is composed of a wavelength-tunable silicon microring resonator and a busline switch. The tunable microring consists of freestanding single-mode waveguides and air-gap directional waveguide couplers. The optical path length of the microring is varied physically by a displacement of electrostatic comb-drive actuator. The busline switch consists of a gap-variable waveguide coupling mechanism, which enables coupling the tunable microring with the busline by another electrostatic comb-drive actuator. During the wavelength tuning of microring, the busline can be disconnected from the microring. Therefore, the proposed device operates as a hitless wavelength-selective switch if they are connected in series. The waveguides are 320 nm in width and 340 nm in thickness. The resonant wavelength shift of the microring is 9.96 nm at the voltage of 26 V with the actuator displacement of 1.0 μm. The coupling to busline is adjusted from the switch-off state at the gap of 600 nm to the switch-on state corresponding to the critical coupling condition at the gap of 383 nm. The whole size of the wavelength-tunable filter with hitless mechanism is about 150 μm by 80 μm. Due to the capacitive operation of the comb-drive actuators, the power consumption is negligibly small.

© 2013 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(250.5300) Optoelectronics : Photonic integrated circuits
(230.4685) Optical devices : Optical microelectromechanical devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: July 22, 2013
Revised Manuscript: August 29, 2013
Manuscript Accepted: September 4, 2013
Published: September 11, 2013

Citation
Taro Ikeda and Kazuhiro Hane, "A tunable notch filter using microelectromechanical microring with gap-variable busline coupler," Opt. Express 21, 22034-22042 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22034


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  2. K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, S. Torii, K. Nose, M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki, A. Gomyo, T. Ishi, D. Okamoto, K. Furue, T. Ueno, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, and J. Akedo, “On-chip optical interconnect,” Proc. IEEE97(7), 1186–1198 (2009). [CrossRef]
  3. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  4. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express13(25), 10109–10114 (2005). [CrossRef] [PubMed]
  5. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 x 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett.41(14), 801–802 (2005). [CrossRef]
  6. M. S. Rasras, D. M. Gill, S. S. Patel, K.-Y. Tu, Y.-K. Chen, A. E. White, A. T. S. Pomerene, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, “Demonstration of a fourth-order pole-zero optical filter integrated using CMOS processes,” J. Lightwave Technol.25(1), 87–92 (2007). [CrossRef]
  7. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express17(7), 5502–5516 (2009). [CrossRef] [PubMed]
  8. X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett.20(11), 936–938 (2008). [CrossRef]
  9. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “1x4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate,” IEEE Photon. Technol. Lett.19(9), 704–706 (2007). [CrossRef]
  10. I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett.18(2), 364–366 (2006). [CrossRef]
  11. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express18(17), 18312–18323 (2010). [CrossRef] [PubMed]
  12. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21989–22003 (2011). [CrossRef] [PubMed]
  13. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express18(11), 10941–10946 (2010). [CrossRef] [PubMed]
  14. Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, “Optical cross-connect circuit using hitless wavelength selective switch,” Opt. Express16(2), 535–548 (2008). [CrossRef] [PubMed]
  15. H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express21(5), 6377–6390 (2013). [CrossRef] [PubMed]
  16. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon Microtoroidal Resonators With Integrated MEMS Tunable Coupler,” IEEE J. Sel. Top. Quantum Electron.13(2), 202–208 (2007). [CrossRef]
  17. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express16(19), 14421–14428 (2008). [CrossRef] [PubMed]
  18. E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett.92(10), 101110 (2008). [CrossRef] [PubMed]
  19. Y. Akihama, Y. Kanamori, and K. Hane, “Ultra-small silicon waveguide coupler switch using gap-variable mechanism,” Opt. Express19(24), 23658–23663 (2011). [CrossRef] [PubMed]
  20. T. Ikeda and K. Hane, “A Microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett.102(22), 221113 (2013). [CrossRef]
  21. Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light: Sci. Appl.1(6), e16 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited