OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22090–22097

Enhancing light extraction efficiency of polymer light-emitting diodes with a 12-fold photonic quasi crystal

Jian Hung Lin, Wei Lang Chang, Hung-Yi Lin, Ta-Hsin Chou, Hung-Chih Kan, and Chia Chen Hsu  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22090-22097 (2013)
http://dx.doi.org/10.1364/OE.21.022090


View Full Text Article

Enhanced HTML    Acrobat PDF (2018 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work demonstrates the enhancement of light extraction of polymer light-emitting diodes (PLEDs) by incorporating a 12-fold photonic quasi crystal (PQC) in the device structure. Multi-exposure two-beam interference technique combined with inductively coupled plasma etching was employed to pattern a 12-fold PQC structure on the ITO film on a glass substrate of the diode. The air-hole coverage (AHC) and etching depth dependences of the light emitting performance of the 12-fold PQC patterned PLEDs were investigated. For AHC within the range between 6.4% and 32.3%, a nearly constant enhancement of the luminance efficiency of the PQC PLEDs was observed. On the other hand, the light emitting performance of the PQC PLEDs is very sensitive to the etching depth. The photoluminescence intensity of the PQC PLEDs increases monotonically with the etching depth. In contrast, the electro luminance efficiency shows a non-monotonic dependence on etching depth with a maximum occurring at 55 nm etching depth. The maximum improvement of luminance efficiency of the 12-fold PQC PLEDs reaches nearly 95% compared with an un-patterned PLED at an injection current of 110 mA.

© 2013 OSA

OCIS Codes
(090.0090) Holography : Holography
(250.0250) Optoelectronics : Optoelectronics
(250.2080) Optoelectronics : Polymer active devices
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: May 20, 2013
Revised Manuscript: August 3, 2013
Manuscript Accepted: August 26, 2013
Published: September 12, 2013

Citation
Jian Hung Lin, Wei Lang Chang, Hung-Yi Lin, Ta-Hsin Chou, Hung-Chih Kan, and Chia Chen Hsu, "Enhancing light extraction efficiency of polymer light-emitting diodes with a 12-fold photonic quasi crystal," Opt. Express 21, 22090-22097 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature347(6293), 539–541 (1990). [CrossRef]
  2. S.-H. Wu, H.-M. Huang, K.-C. Chen, C.-W. Hu, C.-C. Hsu, and R. C.-C. Tsiang, “A green polymeric light-emitting diode material: pol(9,9-dioctylfluorence-alt-thiophene) end-capped with gold nanoparticles,” Adv. Funct. Mater.16(15), 1959–1966 (2006). [CrossRef]
  3. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987). [CrossRef]
  4. G. E. Jabbour, J.-F. Wang, and N. Peyghambarian, “High-efficiency organic electrophophorescent devices through balance of charge injection,” Appl. Phys. Lett.80(11), 2026 (2002). [CrossRef]
  5. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature357(6378), 477–479 (1992). [CrossRef]
  6. J. Bharathan and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. polymer light-emitting logo,” Appl. Phys. Lett.72(21), 2660–2662 (1998). [CrossRef]
  7. E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, “Excimer-based white phosphorescent organic light emitting diodes with nearly 100% internal quantum efficiency,” Adv. Mater.19(2), 197–202 (2007). [CrossRef]
  8. C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett.76(13), 1650–1652 (2000). [CrossRef]
  9. H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96(3), 1649–1654 (2004). [CrossRef]
  10. Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao, and M.-C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett.90(9), 091102 (2007). [CrossRef]
  11. S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys.91(5), 3324–3327 (2002). [CrossRef]
  12. T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Matake, S. Okutani, H. Sano, and K. Asakawa, “Improvement of the light extraction efficiency of top-emitting organic light-emitting diodes by a two-dimensional diffraction layer fabricated using self-assembled nanoparticles,” Appl. Opt.48(31), 5889–5896 (2009). [CrossRef] [PubMed]
  13. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett.82(21), 3779–3781 (2003). [CrossRef]
  14. M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett.85(23), 5769–5771 (2004). [CrossRef]
  15. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008). [CrossRef]
  16. P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, Singapore 1987).
  17. Z. M. Stadnik, Physical Properties of Quasicrystals (Springer, Berlin 1999).
  18. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000). [CrossRef] [PubMed]
  19. N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express14(22), 10746–10752 (2006). [CrossRef] [PubMed]
  20. N. D. Lai, J. H. Lin, and C. C. Hsu, “Fabrication of highly rotational symmetric quasi-periodic structures by multiexposure of a three-beam interference technique,” Appl. Opt.46(23), 5645–5648 (2007). [CrossRef] [PubMed]
  21. A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett.88(7), 073510 (2006). [CrossRef]
  22. Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett.88(17), 171103 (2006). [CrossRef]
  23. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing Action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004). [CrossRef] [PubMed]
  24. X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasicrystals using holographic lithography,” Appl. Phys. Lett.88(5), 051901 (2006). [CrossRef]
  25. R. C. Gauthier and A. Ivanov, “Production of quasi-crystal template patterns using a dual beam multiple exposure technique,” Opt. Express12(6), 990–1003 (2004). [CrossRef] [PubMed]
  26. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express13(23), 9605–9611 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited