OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22098–22113

Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector

Aongus McCarthy, Ximing Ren, Adriano Della Frera, Nathan R. Gemmell, Nils J. Krichel, Carmelo Scarcella, Alessandro Ruggeri, Alberto Tosi, and Gerald S. Buller  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22098-22113 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (8739 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have used an InGaAs/InP single-photon avalanche diode detector module in conjunction with a time-of-flight depth imager operating at a wavelength of 1550 nm, to acquire centimeter resolution depth images of low signature objects at stand-off distances of up to one kilometer. The scenes of interest were scanned by the transceiver system using pulsed laser illumination with an average optical power of less than 600 µW and per-pixel acquisition times of between 0.5 ms and 20 ms. The fiber-pigtailed InGaAs/InP detector was Peltier-cooled and operated at a temperature of 230 K. This detector was used in electrically gated mode with a single-photon detection efficiency of about 26% at a dark count rate of 16 kilocounts per second. The system’s overall instrumental temporal response was 144 ps full width at half maximum. Measurements made in daylight on a number of target types at ranges of 325 m, 910 m, and 4.5 km are presented, along with an analysis of the depth resolution achieved.

© 2013 OSA

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.3780) Detectors : Low light level
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: May 13, 2013
Revised Manuscript: September 1, 2013
Manuscript Accepted: September 3, 2013
Published: September 12, 2013

Aongus McCarthy, Ximing Ren, Adriano Della Frera, Nathan R. Gemmell, Nils J. Krichel, Carmelo Scarcella, Alessandro Ruggeri, Alberto Tosi, and Gerald S. Buller, "Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector," Opt. Express 21, 22098-22113 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics4(7), 429–430 (2010). [CrossRef]
  2. M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001). [CrossRef]
  3. C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009). [CrossRef]
  4. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  5. G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron.13(4), 1006–1015 (2007). [CrossRef]
  6. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging13(1), 231–243 (2004). [CrossRef]
  7. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt.38(9), 1833–1840 (1999). [CrossRef] [PubMed]
  8. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn.34(3-4), 503–549 (2002). [CrossRef]
  9. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J13, 351–370 (2002).
  10. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).
  11. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt.48(32), 6241–6251 (2009). [CrossRef] [PubMed]
  12. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express16(18), 13685–13698 (2008). [CrossRef] [PubMed]
  13. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits40(9), 1847–1854 (2005). [CrossRef]
  14. D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G. F. Dalla Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,” IEEE Trans. Circuits Syst. Regul. Pap.54(1), 4–12 (2007). [CrossRef]
  15. C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 x 96-Pixel Time-of-Flight Depth Sensor in 0.18-mu m CMOS,” IEEE J. Solid-State Circuits48(2), 559–572 (2013). [CrossRef]
  16. H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today's Networks (Sams, Indianapolis, 2002).
  17. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.96(2), 139–204 (2005). [CrossRef]
  18. R. Henderson and K. Schulmeister, Laser Safety (Institute of Physics Publishing, 2004).
  19. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol.21(1), 012002 (2010). [CrossRef]
  20. P. Yuan, R. Sudharsanan, X. G. Bai, P. McDonald, E. Labios, B. Morris, J. P. Nicholson, G. M. Stuart, H. Danny, S. Van Duyne, G. Pauls, S. Gaalema, M. D. Turner, and G. W. Kamerman, “Three-dimensional imaging with 1.06 µm Geiger-mode LADAR camera,” Laser Radar Technology and Applications XVII8379, 837902, 837902-12 (2012). [CrossRef]
  21. M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. D. Jiang, K. Slomkowski, S. Rangwala, and J. C. Campbell, “Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging,” Advanced Photon Counting TechniquesVI, 8375 (2012).
  22. M. A. Diagne, M. Greszik, E. K. Duerr, J. J. Zayhowski, M. J. Manfra, R. J. Bailey, J. P. Donnelly, and G. W. Turner, “Integrated array of 2-μm antimonide-based single-photon counting devices,” Opt. Express19(5), 4210–4216 (2011). [CrossRef] [PubMed]
  23. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010). [CrossRef]
  24. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett.32(15), 2266–2268 (2007). [CrossRef] [PubMed]
  25. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express21(7), 8904–8915 (2013). [CrossRef] [PubMed]
  26. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol.25(6), 063001 (2012). [CrossRef]
  27. A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 µm: Performance of commercially available InGaAs/lnP detectors,” Appl. Opt.35(16), 2986–2996 (1996). [CrossRef] [PubMed]
  28. G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt.37(12), 2272–2277 (1998). [CrossRef] [PubMed]
  29. J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, “Single-photon counting for the 1300-1600-nm range by use of peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt.39(36), 6746–6753 (2000). [CrossRef] [PubMed]
  30. P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, I. Gontijo, A. C. Walker, P. D. Townsend, and M. J. Robertson, “Performance and design of InGaAs /InP photodiodes for single-photon counting at 1.55 microm,” Appl. Opt.39(36), 6818–6829 (2000). [CrossRef] [PubMed]
  31. S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron.42(4), 397–403 (2006). [CrossRef]
  32. M. A. Itzler, X. D. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58(3-4), 174–200 (2011). [CrossRef]
  33. A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail,” IEEE J. Quantum Electron.48(9), 1227–1232 (2012). [CrossRef]
  34. A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum.83(1), 013104 (2012). [CrossRef] [PubMed]
  35. A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” Quantum Sensing and Nanophotonic Devices IX8268, 82681S, 82681S-6 (2012). [CrossRef]
  36. A. Nayak, E. Trucco, A. Ahmad, and A. M. Wallace, “SimBIL: appearance-based simulation of burst-illumination laser sequences,” IET Image Proc.2(3), 165–174 (2008). [CrossRef]
  37. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express17(8), 6275–6282 (2009). [CrossRef] [PubMed]
  38. M. Ren, X. R. Gu, Y. Liang, W. B. Kong, E. Wu, G. Wu, and H. P. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express19(14), 13497–13502 (2011). [CrossRef] [PubMed]
  39. N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt.58(3-4), 244–256 (2011). [CrossRef]
  40. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4158 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited