OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22139–22144

Nanoscale resolution for fluorescence microscopy via adiabatic passage

Juan Luis Rubio, Daniel Viscor, Veronica Ahufinger, and Jordi Mompart  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22139-22144 (2013)
http://dx.doi.org/10.1364/OE.21.022139


View Full Text Article

Enhanced HTML    Acrobat PDF (1004 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose the use of the subwavelength localization via adiabatic passage technique for fluorescence microscopy with nanoscale resolution in the far field. This technique uses a Λ-type medium coherently coupled to two laser pulses: the pump, with a node in its spatial profile, and the Stokes. The population of the Λ system is adiabatically transferred from one ground state to the other except at the node position, yielding a narrow population peak. This coherent localization allows fluorescence imaging with nanometer lateral resolution. We derive an analytical expression to asses the resolution and perform a comparison with the coherent population trapping and the stimulated-emission-depletion techniques.

© 2013 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(110.0180) Imaging systems : Microscopy
(270.0270) Quantum optics : Quantum optics

ToC Category:
Microscopy

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 16, 2013
Manuscript Accepted: August 16, 2013
Published: September 12, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Juan Luis Rubio, Daniel Viscor, Veronica Ahufinger, and Jordi Mompart, "Nanoscale resolution for fluorescence microscopy via adiabatic passage," Opt. Express 21, 22139-22144 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22139


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat.9, 413 (1873). [CrossRef]
  2. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21, 1347 (2003). [CrossRef] [PubMed]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19, 780 (1994). [CrossRef] [PubMed]
  4. S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60, 495 (1995). [CrossRef]
  5. G. S. Agarwal and K. T. Kapale, “Subwavelength atom localization via coherent population trapping,” J. Phys. B: At. Mol. Opt. Phys.39, 3437 (2006). [CrossRef]
  6. A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, “Coherent quantum optical control with subwavelength resolution,” Phys. Rev. Lett.100, 093005 (2008). [CrossRef] [PubMed]
  7. D. D. Yavuz and N. A. Proite, “Nanoscale resolution fluorescence microscopy using electromagnetically induced transparency,” Phys. Rev. A76, 041802(R) (2007). [CrossRef]
  8. K. T. Kapale and S. Agarwal, “Subnanoscale resolution for microscopy via coherent population trapping,” Op. Lett.35, 2792 (2010). [CrossRef]
  9. H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008). [CrossRef]
  10. J. Mompart, V. Ahufinger, and G. Birkl, “Coherent patterning of matter waves with subwavelength localization,” Phys. Rev. A79, 053638 (2009). [CrossRef]
  11. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003 (1998). [CrossRef]
  12. D. Viscor, J. L. Rubio, G. Birkl, J. Mompart, and V. Ahufinger, “Single-site addressing of ultracold atoms beyond the diffraction limit via position-dependent adiabatic passage,” Phys. Rev. A86, 063409 (2012). [CrossRef]
  13. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, New Series, 271, 933–937 (1996).
  14. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005). [CrossRef] [PubMed]
  15. U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett.77, 1864 (2000). [CrossRef]
  16. J. Fabian and U. Hohenester, “Entanglement distillation by adiabatic passage in coupled quantum dots,” Phys. Rev. B72, 201304(R) (2005). [CrossRef]
  17. P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000). [CrossRef]
  18. S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. W. Hell, “Direct light-driven modulation of luminescence from Mn-Doped ZnSe quantum dots,” Angew. Chem. Int. Ed.47(14), 2685–8, (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1: Fig. 2: Fig. 3:
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited