OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22173–22185

Near-field thermal radiation between graphene-covered doped silicon plates

Mikyung Lim, Seung S. Lee, and Bong Jae Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22173-22185 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2092 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The present work describes a theoretical investigation of the near-field thermal radiation between doped Si plates coated with a mono-layer of graphene. It is found that the radiative heat flux between doped Si plates can be either enhanced or suppressed by introducing graphene layer, depending on the Si doping concentration and chemical potential of graphene. Graphene can enhance the heat flux if it matches resonance frequencies of surface plasmon at vacuum-source and vacuum-receiver interfaces. In particular, significant enhancement is achieved when graphene is coated on both surfaces that originally does not support the surface plasmon resonance. The results obtained in this study provide an important guideline into enhancing the near-field thermal radiation between doped Si plates by introducing graphene.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.7040) Optics at surfaces : Tunneling

ToC Category:
Photonic Crystals

Original Manuscript: July 11, 2013
Revised Manuscript: August 26, 2013
Manuscript Accepted: September 3, 2013
Published: September 12, 2013

Mikyung Lim, Seung S. Lee, and Bong Jae Lee, "Near-field thermal radiation between graphene-covered doped silicon plates," Opt. Express 21, 22173-22185 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4, 3303–3314 (1971). [CrossRef]
  2. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng.6, 209–222 (2002). [CrossRef]
  3. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  4. P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B77, 035431 (2008). [CrossRef]
  5. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009). [CrossRef]
  6. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9, 2909–2913 (2009). [CrossRef] [PubMed]
  7. L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Plancks blackbody radiation law,” Appl. Phys. Lett.92, 133106 (2008). [CrossRef]
  8. R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011). [CrossRef] [PubMed]
  9. T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, “Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces,” Phys. Rev. Lett.109, 224302 (2012). [CrossRef]
  10. F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, and J.-J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun.237, 379–388 (2004). [CrossRef]
  11. C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer49, 1703–1718 (2006). [CrossRef]
  12. S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer132, 023302 (2010). [CrossRef]
  13. S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer132, 023301 (2010). [CrossRef]
  14. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6, 183–191 (2007). [CrossRef] [PubMed]
  15. P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett.10, 4285–4294 (2010). [CrossRef]
  16. F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol.6, 611–612 (2011). [CrossRef] [PubMed]
  17. B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys. Condens. Matter22, 462201 (2010). [CrossRef]
  18. A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B83, 241407 (2011). [CrossRef]
  19. V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B85, 155418 (2012). [CrossRef]
  20. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B85, 155422 (2012). [CrossRef]
  21. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20, A366–A384 (2012). [CrossRef] [PubMed]
  22. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports3, 1383 (2013). [CrossRef] [PubMed]
  23. B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng.12, 238–250 (2008). [CrossRef]
  24. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B4, 481–489 (1987). [CrossRef]
  25. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys.43, 075501 (2010). [CrossRef]
  26. S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B58, 423–431 (2007). [CrossRef]
  27. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser.129, 012004 (2008). [CrossRef]
  28. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  29. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B78, 085432 (2008). [CrossRef]
  30. K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer109, 305–316 (2008). [CrossRef]
  31. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer110, 2002–2018 (2009). [CrossRef]
  32. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon meta-material,” Opt. Express20, 28017–28024 (2012). [CrossRef] [PubMed]
  33. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009). [CrossRef]
  34. K. Park, B. J Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B22(5), 1016–1023 (2005). [CrossRef]
  35. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited