OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22215–22220

3D beam reconstruction by fluorescence imaging

N. Radwell, M. A. Boukhet, and S. Franke-Arnold  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22215-22220 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2959 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a technique for mapping the complete 3D spatial intensity profile of a laser beam from its fluorescence in an atomic vapour. We propagate shaped light through a rubidium vapour cell and record the resonant scattering from the side. From a single measurement we obtain a camera limited resolution of 200 × 200 transverse points and 659 longitudinal points. In constrast to invasive methods in which the camera is placed in the beam path, our method is capable of measuring patterns formed by counterpropagating laser beams. It has high resolution in all 3 dimensions, is fast and can be completely automated. The technique has applications in areas which require complex beam shapes, such as optical tweezers, atom trapping and pattern formation.

© 2013 OSA

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(330.1880) Vision, color, and visual optics : Detection
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Atomic and Molecular Physics

Original Manuscript: August 5, 2013
Revised Manuscript: September 2, 2013
Manuscript Accepted: September 2, 2013
Published: September 12, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

N. Radwell, M. A. Boukhet, and S. Franke-Arnold, "3D beam reconstruction by fluorescence imaging," Opt. Express 21, 22215-22220 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Grier, “A revolution in optical manipulation,” Nature424, 810–816 (2003). [CrossRef] [PubMed]
  2. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. Atom. Mol. Opt. Phys.42, 95 (2000). [CrossRef]
  3. R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys.76, 026401 (2013). [CrossRef] [PubMed]
  4. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express15, 8619–8625 (2007). [CrossRef] [PubMed]
  5. Y. Zhang, “Generation of three-dimensional dark spots with a perfect light shell with a radially polarized laguerre–gaussian beam,” Appl. Opt.49, 6217–6223 (2010). [CrossRef] [PubMed]
  6. A. S. Arnold, “Extending dark optical trapping geometries,” Opt. Lett.37, 2505–2507 (2012). [CrossRef] [PubMed]
  7. R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A59, R1750 (1999). [CrossRef]
  8. P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett.35, 2164–2166 (2010). [CrossRef] [PubMed]
  9. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5, 343–348 (2011). [CrossRef]
  10. M. Lee, A. Curran, G. Gibson, M. Tassieri, N. Heckenberg, and M. Padgett, “Optical shield: measuring viscosity of turbid fluids using optical tweezers,” Opt. Express20, 12127–12132 (2012). [CrossRef] [PubMed]
  11. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express18, 11785–11790 (2010). [CrossRef] [PubMed]
  12. G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a gerchberg–saxton algorithm,” New J. Phys.7, 117 (2005). [CrossRef]
  13. J. Romero, J. Leach, B. Jack, M. Dennis, S. Franke-Arnold, S. Barnett, and M. Padgett, “Entangled optical vortex links,” Phys. Rev Lett.106, 100407 (2011). [CrossRef] [PubMed]
  14. D. Walker, “A fluorescence technique for measurement of concentration in mixing liquids,” J. Phys. E20, 217 (1987). [CrossRef]
  15. A. J. Smits and T. T. Lim, Flow Visualisation: Techniques and Examples (Imperial College Press, London, 2000).
  16. A. Hoffmann, F. Zimmermann, H. Scharr, S. Krömker, and C. Schulz, “Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging,” Appl. Phys. B80, 125–131 (2005). [CrossRef]
  17. C. J. Foot, Atomic Physics (Oxford University Press, Oxford, 2004).
  18. J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Ver. Sächs. Akad. Wiss. Leipzig, Math-Phys. Kl.69, 262–277 (1917). In German. An English translation can be found in S. R. Deans: The Radon Transform and Some of Its Applications.
  19. R. Bowman, V. DAmbrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. Padgett, “Optimisation of a low cost slm for diffraction efficiency and ghost order suppression,” E. Phys. J. Spec. Top.199, 149–158 (2011). [CrossRef]
  20. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88, 257901–257901 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited