OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22453–22463

Synthetic Fourier transform light scattering

KyeoReh Lee, Hyeon-Don Kim, Kyoohyun Kim, Youngchan Kim, Timothy R. Hillman, Bumki Min, and YongKeun Park  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22453-22463 (2013)
http://dx.doi.org/10.1364/OE.21.022453


View Full Text Article

Acrobat PDF (3670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present synthetic Fourier transform light scattering, a method for measuring extended angle-resolved light scattering (ARLS) from individual microscopic samples. By measuring the light fields scattered from the sample plane and numerically synthesizing them in Fourier space, the angle range of the ARLS patterns is extended up to twice the numerical aperture of the imaging system with unprecedented sensitivity and precision. Extended ARLS patterns of individual microscopic polystyrene beads, healthy human red blood cells (RBCs), and Plasmodium falciparum-parasitized RBCs are presented.

© 2013 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(170.1530) Medical optics and biotechnology : Cell analysis
(290.5820) Scattering : Scattering measurements

ToC Category:
Scattering

History
Original Manuscript: July 23, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 7, 2013
Published: September 16, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
KyeoReh Lee, Hyeon-Don Kim, Kyoohyun Kim, Youngchan Kim, Timothy R. Hillman, Bumki Min, and YongKeun Park, "Synthetic Fourier transform light scattering," Opt. Express 21, 22453-22463 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22453


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. C. d. Hulst, Light scattering by small particles (Wiley, New York, 1957).
  2. A. A. Kokhanovsky, Optics of light scattering media: problems and solutions (John Wiley: Praxis, Chichester; New York, 1999).
  3. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008). [CrossRef] [PubMed]
  4. H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett.34(9), 1372–1374 (2009). [CrossRef] [PubMed]
  5. H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier Transform Light Scattering (FTLS) of Cells and Tissues,” J. Com. Theo. Nanosci.7(12), 2501–2511 (2010). [CrossRef]
  6. Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt.16(1), 011013 (2011). [CrossRef] [PubMed]
  7. Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt.15(2), 020506 (2010). [CrossRef] [PubMed]
  8. Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt.17(4), 040501 (2012). [CrossRef] [PubMed]
  9. H. Ding, L. J. Millet, M. U. Gillette, and G. Popescu, “Actin-driven cell dynamics probed by Fourier transform light scattering,” Biomed. Opt. Express1(1), 260–267 (2010). [CrossRef] [PubMed]
  10. H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett.37(13), 2577–2579 (2012). [CrossRef] [PubMed]
  11. C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and V-groove texturing for efficient light trapping in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells115, 36–41 (2013). [CrossRef]
  12. W. Choi, C. C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett.33(14), 1596–1598 (2008). [CrossRef] [PubMed]
  13. K. Kim and Y. Park, “Fourier transform light scattering angular spectroscopy using digital inline holography,” Opt. Lett.37(19), 4161–4163 (2012). [CrossRef] [PubMed]
  14. W. M. Brown, “Synthetic aperture radar,” IEEE Trans. Aerospace Electron. Syst.2(2), 217–229 (1967). [CrossRef]
  15. M. Neil and A. Squire, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc.197(1), 1–4 (2000). [CrossRef] [PubMed]
  16. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett.97(16), 168102 (2006). [CrossRef] [PubMed]
  17. L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express16(1), 161–169 (2008). [CrossRef] [PubMed]
  18. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express16(21), 17107–17118 (2008). [CrossRef] [PubMed]
  19. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A23(12), 3162–3170 (2006). [CrossRef] [PubMed]
  20. V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun.276(2), 209–217 (2007). [CrossRef]
  21. V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express16(23), 19260–19270 (2008). [CrossRef] [PubMed]
  22. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express17(10), 7873–7892 (2009). [CrossRef] [PubMed]
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  24. T. M. Habashy, R. W. Groom, and B. R. Spies, “Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering,” J. Geophys. Res.: Solid Earth98(B2), 1759–1775 (1993).
  25. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt.19(1), 011005 (2014). [CrossRef] [PubMed]
  26. Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express17(1), 266–277 (2009). [CrossRef] [PubMed]
  27. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc.205(2), 165–176 (2002). [CrossRef] [PubMed]
  28. A. J. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett.6(8), 374–376 (1981). [CrossRef] [PubMed]
  29. K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel)13(4), 4170–4191 (2013). [CrossRef] [PubMed]
  30. M. Madou, Fundamentals of microfabrication: the science of miniaturization (CRC press, 2002).
  31. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A.105(37), 13730–13735 (2008). [CrossRef] [PubMed]
  32. G. Pasvol, R. J. Wilson, M. E. Smalley, and J. Brown, “Separation of viable schizont-infected red cells of Plasmodium falciparum from human blood,” Ann. Trop. Med. Parasitol.72(1), 87–88 (1978). [PubMed]
  33. C. Lambros and J. P. Vanderberg, “Synchronization of Plasmodium falciparum erythrocytic Stages in Culture,” J. Parasitol.65(3), 418–420 (1979). [CrossRef] [PubMed]
  34. T. Rothe, M. Schmitz, and A. Kienle, “Angular and spectrally resolved investigation of single particles by darkfield scattering microscopy,” J. Biomed. Opt.17(11), 117006 (2012). [CrossRef] [PubMed]
  35. M. Diez-Silva, Y. Park, S. Huang, O. Mercereau-Puijalon, G. Deplaine, C. Lavazec, S. Perrot, S. Bonnefoy, M. Dao, M. S. Feld, J. Han, and S. Suresh, “Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells,” Sci. Rep.2, 614 (2012).
  36. H. S. Byun, T. R. Hillman, J. M. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomater.8(11), 4130-4138 (2012).
  37. R. Chandramohanadas, Y. Park, L. Lui, A. Li, D. Quinn, K. Liew, M. Diez-Silva, Y. Sung, M. Dao, C. T. Lim, P. R. Preiser, and S. Suresh, “Biophysics of malarial parasite exit from infected erythrocytes,” PLoS ONE6(6), e20869 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited