OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22504–22514

Dynamic bending compensation while focusing through a multimode fiber

Salma Farahi, David Ziegler, Ioannis N. Papadopoulos, Demetri Psaltis, and Christophe Moser  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22504-22514 (2013)
http://dx.doi.org/10.1364/OE.21.022504


View Full Text Article

Enhanced HTML    Acrobat PDF (1548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multimode fiber endoscopes have recently been shown to provide sub-micrometer resolution, however, imaging through a multimode fiber is highly sensitive to bending. Here we describe the implementation of a coherent beacon source placed at the distal tip of the multimode fiber, which can be used to compensate for the effects of bending. In the first part of this paper, we show that a diffraction limited focused spot can be generated at the distal tip of the multimode fiber using the beacon. In the second part, we demonstrate focusing even when the fiber is bent by dynamically compensating for it. The speckle pattern at the proximal fiber end, generated by the beacon source placed at its distal end, is highly dependent on the fiber conformation. We experimentally show that by intensity correlation, it is possible to identify the fiber conformation and maintain a focus spot while the fiber is bent over a certain range. Once the fiber configuration is determined, previously calibrated phase patterns could be stored for each fiber conformation and used to scan the distal spot and perform imaging.

© 2013 OSA

OCIS Codes
(070.5040) Fourier optics and signal processing : Phase conjugation
(090.1000) Holography : Aberration compensation
(110.2350) Imaging systems : Fiber optics imaging
(090.1995) Holography : Digital holography
(090.5694) Holography : Real-time holography

ToC Category:
Imaging Systems

History
Original Manuscript: July 9, 2013
Revised Manuscript: September 7, 2013
Manuscript Accepted: September 10, 2013
Published: September 17, 2013

Citation
Salma Farahi, David Ziegler, Ioannis N. Papadopoulos, Demetri Psaltis, and Christophe Moser, "Dynamic bending compensation while focusing through a multimode fiber," Opt. Express 21, 22504-22514 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22504


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2(12), 941–950 (2005). [CrossRef] [PubMed]
  2. D. M. Huland, C. M. Brown, S. S. Howard, D. G. Ouzounov, I. Pavlova, K. Wang, D. R. Rivera, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems,” Biomed. Opt. Express3(5), 1077–1085 (2012). [CrossRef] [PubMed]
  3. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol.91(4), 1908–1912 (2004). [CrossRef] [PubMed]
  4. F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol.87(6), 737–745 (2002). [CrossRef] [PubMed]
  5. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett.31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  6. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011). [CrossRef] [PubMed]
  7. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip12(3), 635–639 (2012). [CrossRef] [PubMed]
  8. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109(20), 203901 (2012). [CrossRef] [PubMed]
  9. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat Commun3, 1027 (2012). [CrossRef] [PubMed]
  10. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express4(2), 260–270 (2013). [CrossRef] [PubMed]
  11. P. H. Beckwith, I. McMichael, and P. Yeh, “Image distortion in multimode fibers and restoration by polarization-preserving phase conjugation,” Opt. Lett.12(7), 510–512 (1987). [CrossRef] [PubMed]
  12. D. Z. Anderson, M. A. Bolshtyansky, and B. Y. Zel’dovich, “Stabilization of the speckle pattern of a multimode fiber undergoing bending,” Opt. Lett.21(11), 785–787 (1996). [CrossRef] [PubMed]
  13. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express21(10), 12881–12887 (2013). [CrossRef] [PubMed]
  14. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express20(10), 10583–10590 (2012). [CrossRef] [PubMed]
  15. C. Bellanger, A. Brignon, J. Colineau, and J. P. Huignard, “Coherent fiber combining by digital holography,” Opt. Lett.33(24), 2937–2939 (2008). [CrossRef] [PubMed]
  16. H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol® HX photopolymer,” Proc. SPIE7957, 79570H(2011). [CrossRef]
  17. F. T. Yu, J. Zhang, S. Yin, and P. B. Ruffin, “Analysis of a fiber specklegram sensor by using coupled-mode theory,” Appl. Opt.34(16), 3018–3023 (1995). [CrossRef] [PubMed]
  18. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9(9), 919–933 (1973). [CrossRef]
  19. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Sixth Edition (Oxford University, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2946 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited