OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22558–22565

Simultaneous generation of monoenergetic tunable protons and carbon ions from laser-driven nanofoils

T. P. Yu, Y. Yin, D. B. Zou, Z. Y. Ge, X. H. Yang, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and A. Pukhov  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22558-22565 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (984 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Simultaneous generation of monoenergetic tunable protons and carbon ions from intense laser multi-component nanofoil interaction is demonstrated by using particle-in-cell simulations. It is shown that, the protons with the largest charge-to-mass ratio are instantly separated from other ion species and are efficiently accelerated in the ”phase stable” way. The carbon ions always ride on the heavier oxygen ion front with an electron-filling gap between the protons and carbon ions. At the cost of widely spread oxygen ions, monoenergetic collimated protons and carbon ions are obtained simultaneously. By modulating the heavier ion densities in the foil, it is capable to control the final beam quality, which is well interpreted by a simple analytical model.

© 2013 OSA

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.5400) Other areas of optics : Plasmas
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Ultrafast Optics

Original Manuscript: July 23, 2013
Revised Manuscript: September 8, 2013
Manuscript Accepted: September 9, 2013
Published: September 18, 2013

T. P. Yu, Y. Yin, D. B. Zou, Z. Y. Ge, X. H. Yang, H. B. Zhuo, Y. Y. Ma, F. Q. Shao, and A. Pukhov, "Simultaneous generation of monoenergetic tunable protons and carbon ions from laser-driven nanofoils," Opt. Express 21, 22558-22565 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Galow, Z. Harman, and C. H. Keitel, “Intense high-quality medical proton beams via laser fields,” Opt. Express18, 25950–25957 (2010). [CrossRef] [PubMed]
  2. N. Naumova, T. Schlegel, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Hole Boring in a DT Pellet and Fast-Ion Ignition with Ultraintense Laser Pulses,” Phys. Rev. Lett.102, 025002 (2009). [CrossRef] [PubMed]
  3. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, S. Hatchett, M. H. Key, D. Pennington, A. Mackinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laserCsolid interactions,” Phys. Plasmas8, 542–549 (2001). [CrossRef]
  4. H. Schwoerer, S. Pfotenhauer, O. Jäckel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham, and T. Esirkepov, “Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets,” Nature (London)439, 445–448 (2006). [CrossRef]
  5. S. A. Gaillard, T. Kluge, K. A. Flippo, M. Bussmann, B. Gall, T. Lockard, M. Geissel, D. T. Offermann, M. Schollmeier, Y. Sentoku, and T. E. Cowan, “Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets,” Phys. Plasmas18, 056710 (2011). [CrossRef]
  6. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys.85, 751–793 (2013). [CrossRef]
  7. T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime,” Phys. Rev. Lett.92, 175003 (2004). [CrossRef] [PubMed]
  8. A. P. L. Robinson, M. Zepf, S. Kar, and R. G. Evans, “Radiation pressure acceleration of thin foils with circularly polarized laser pulses,” New J. Phys.10, 013021 (2008). [CrossRef]
  9. X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating High-Current Monoenergetic Proton Beams by a Circularly Polarized Laser Pulse in the Phase-Stable Acceleration Regime,” Phys. Rev. Lett.100, 135003 (2008). [CrossRef] [PubMed]
  10. T. P. Yu, A. Pukhov, Z. M. Sheng, F. Liu, and G. Shvets, “Bright Betatronlike X Rays from Radiation Pressure Acceleration of a Mass-Limited Foil Target,” Phys. Rev. Lett.110, 045001 (2013). [CrossRef]
  11. Q. L. Dong, Z.-M. Sheng, M. Y. Yu, and J. Zhang, “Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils,” Phys. Rev. E68, 026408 (2003). [CrossRef]
  12. V. K. Tripathi, C. S. Liu, X. Shao, B. Eliasson, and R. Z. Sagdeev, “Laser acceleration of monoenergetic protons in a self-organized double layer from thin foil,” Plasma Phys. Control. Fusion51, 024014 (2009). [CrossRef]
  13. M. Chen, A. Pukhov, and T. P. Yu, “Enhanced Collimated GeV Monoenergetic Ion Acceleration from a Shaped Foil Target Irradiated by a Circularly Polarized Laser Pulse,” Phys. Rev. Lett.103, 024801 (2009). [CrossRef] [PubMed]
  14. M. Chen, T. P. Yu, A. Pukhov, and Z. M. Sheng, “Target shape effects on monoenergetic GeV proton acceleration,” New J. Phys.12, 045004 (2010). [CrossRef]
  15. T. P. Yu, M. Chen, and A. Pukhov, “High quality GeV proton beams from a density-modulated foil target,” Laser Part. Beams27, 611–617 (2009). [CrossRef]
  16. Y. Q. Cui, W. M. Wang, Z. M. Sheng, Y. T. Li, and J. Zhang, “Quasimonoenergetic proton bunches generation from doped foil targets irradiated by intense lasers,” Phys. Plasmas20, 024502 (2013). [CrossRef]
  17. A. Henig, S. Steinke, M. Schnürer, T. Sokollik, R. Hörlein, D. Kiefer, D. Jung, J. Schreiber, B. M. Hegelich, X. Q. Yan, J. Meyer-ter-Vehn, T. Tajima, P. V. Nickles, W. Sandner, and D. Habs, “Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses,” Phys. Rev. Lett.103, 245003 (2009). [CrossRef]
  18. S. Kar, K. F. Kakolee, B. Qiao, A. Macchi, M. Cerchez, D. Doria, M. Geissler, P. McKenna, D. Neely, J. Osterholz, R. Prasad, K. Quinn, B. Ramakrishna, G. Sarri, O. Willi, X.Y Yuan, M. Zepf, and M. Borghesi, “Ion acceleration in multispecies targets driven by intense laser radiation pressure,” Phys. Rev. Lett.109, 185006 (2012). [CrossRef] [PubMed]
  19. S. Steinke, P. Hilz, M. Schnürer, G. Priebe, J. Bränzel, F. Abicht, D. Kiefer, C. Kreuzer, T. Ostermayr, J. Schreiber, A. A. Andreev, T. P. Yu, A. Pukhov, and W. Sandner, “Stable laser-ion acceleration in the light sail regime,” Phys. Rev. ST Accel. Beams16, 011303 (2013). [CrossRef]
  20. B. Aurand, S. Kuschel, O. Jäckel, C. Rödel, H. Y. Zhao, S. Herzer, A. E. Paz, J. Bierbach, J. Polz, B. Elkin, G. G. Paulus, A. Karmakar, P. Gibbon, T. Kuehl, and M. C. Kaluza, “Radiation pressure-assisted acceleration of ions using multi-component foils in high-intensity laserCmatter interactions,” New J. Phys.15, 033031 (2013). [CrossRef]
  21. F. Pegoraro and S. V. Bulanov, “Photon Bubbles and Ion Acceleration in a Plasma Dominated by the Radiation Pressure of an Electromagnetic Pulse,” Phys. Rev. Lett.99, 065002 (2007). [CrossRef] [PubMed]
  22. M. Chen, N. Kumar, A. Pukhov, and T. P. Yu, “Stabilized radiation pressure dominated ion acceleration from surface modulated thin-foil targets,” Phys. Plasmas18, 073106 (2011). [CrossRef]
  23. T. P. Yu, A. Pukhov, G. Shvets, and M. Chen, “Stable Laser-Driven Proton Beam Acceleration from a Two-Ion-Species Ultrathin Foil,” Phys. Rev. Lett.105, 065002 (2010). [CrossRef] [PubMed]
  24. T. P. Yu, A. Pukhov, G. Shvets, M. Chen, T. H. Ratliff, S. A. Yi, and V. Khudik, “Simulations of stable compact proton beam acceleration from a two-ion-species ultrathin foil,” Phys. Plasmas18, 043110 (2011). [CrossRef]
  25. A. Pukhov, “Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab),” J. Plasma Phys.61, 425–433 (1999). [CrossRef]
  26. K. Ostrikov, “Colloquium: Reactive plasmas as a versatile nanofabrication tool,” Rev. Mod. Phys.77, 751–793 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited