OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22596–22609

Processing and phase analysis of fringe patterns with contrast reversals

Krzysztof Pokorski and Krzysztof Patorski  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22596-22609 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for demodulating fringe patterns containing contrast reversals is proposed. It consists of two steps. First, the absolute value of the fringe intensity distribution with its background removed is calculated. Then, two dimensional continuous wavelet transform with enhanced ridge extraction algorithm is applied to extract the fringe phase map. Proposed approach allows to dispose of phase jumps along the contrast reversal bands. The method requires only one image and has no special demands concerning the fringe pattern design. Method validity and robustness is confirmed using experimentally acquired time-averaged interferograms of vibrating silicon micromembranes.

© 2013 OSA

OCIS Codes
(100.7410) Image processing : Wavelets
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 5, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 8, 2013
Published: September 18, 2013

Krzysztof Pokorski and Krzysztof Patorski, "Processing and phase analysis of fringe patterns with contrast reversals," Opt. Express 21, 22596-22609 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D.W. Robinson and G. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement (Institute of Physics Publishing, 1993).
  2. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).
  3. H. Osterberg, “An interferometer method of studying the vibrations of an oscillating quartz plate,” J. Opt. Soc. Am.22, 19–35 (1932). [CrossRef]
  4. A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry in the MEMS field,” Proc. SPIE5145, 1–16 (2003). [CrossRef]
  5. L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003). [CrossRef]
  6. K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng.45, 085602 (2006). [CrossRef]
  7. S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE4400, 51–60 (2001). [CrossRef]
  8. A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt.46, 4613–4624 (2007). [CrossRef] [PubMed]
  9. K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Opt.49, 3640–3651 (2010). [CrossRef] [PubMed]
  10. M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt.50, 5513–5523 (2011). [CrossRef] [PubMed]
  11. K. Patorski and M. Trusiak, “Highly contrasted Bessel fringe minima visualization for time-averaged vibration profilometry using Hilbert transform two-frame processing,” Opt. Express21, 16863–16881 (2013). [CrossRef] [PubMed]
  12. M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Laser Eng., http://www.dx.doi/10/1016/j.optlasereng.2013.06.003 (2013).
  13. R. J. Pryputniewicz and K. A. Stetson, “Measurement of vibration patterns using electro-optic holography,” Proc. SPIE1162, 456–467 (1990). [CrossRef]
  14. J. D. Hovanesian and Y. Hung, “Moiré contour-sum, contour-difference and vibration analysis of arbitrary objects,” Appl. Opt.10, 2743–2738 (1971). [CrossRef]
  15. G. Rosvold, “Video-based vibration analysis using projected fringes,” Appl. Opt.33, 775–786 (1994). [CrossRef] [PubMed]
  16. M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain45, doi: (2009), and references therein. [CrossRef]
  17. P. Chavel and T. C. Strand, “Range measurement using Talbot diffraction imaging of gratings,” Appl. Opt.23, 862–871 (1984). [CrossRef] [PubMed]
  18. G. Xian-Yu Su, von Bally, and D. Vukicevic, “Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation,” Opt. Commun.98, 141–150 (1993). [CrossRef]
  19. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A13, 832–843 (1996). [CrossRef]
  20. J. E. Greivenkamp and A. E. Lowman, “Modulation transfer function measurement of sparse-array sensors using a self-calibrating fringe pattern,” Appl. Opt.33, 5029–5036 (1994). [CrossRef] [PubMed]
  21. J. G. Fujimoto, W. Drexler, U. Morgner, F. Kärtner, and E. Ippen, “Optical coherence tomography: High resolution imaging using echoes of light,” Opt. Photon. News11, 24–31 (2000). [CrossRef]
  22. J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, “Image restoration method based on Hilbert transform for full-field optical coherence tomography,” Appl. Opt.47, 459–466 (2008). [CrossRef] [PubMed]
  23. H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: A novel technique for biomedical imaging applications,” Adv. Opt. Technol.2012, 435408 (2012).
  24. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22, 1905–1907 (1997). [CrossRef]
  25. T. Tkaczyk, M. Rahman, V. Mack, K. Sokolov, J. Rogers, R. Richards-Kortum, and M. Descour, “High resolution, molecular-specific, reflectance imaging in optically dense tissue phantoms with structured-illumination,” Opt. Express12, 3745–3758 (2004). [CrossRef] [PubMed]
  26. C. Ai and J. C. Wyant, “Effect of spurious reflection on phase shift interferometry,” Appl. Opt.27, 3039–3045 (1988). [CrossRef] [PubMed]
  27. P. de Groot, “Measurement of transparent plates with wavelength-tuned phase-shifting interferometry,” Appl. Opt.39, 2658–2663 (2000). [CrossRef]
  28. K. Hibino, B. F. Oreb, P. S. Fairman, and J. Burke, “Simultaneous measurement of surface shape and variation in optical thickness of a transparent parallel plate in wavelength-scanning fizeau interferometer,” Appl. Opt.43, 1241–1249 (2004). [CrossRef] [PubMed]
  29. A. Styk and K. Patorski, “Fizeau interferometer for quasi parallel optical plate testing,” Proc. SPIE7063, 70630P–70630P–9 (2008). [CrossRef]
  30. Z. Sunderland, K. Patorski, and K. Pokorski, “Evaluation of optical parameters of quasi-parallel plates with single-frame interferogram analysis methods,” Photonics Lett. Poland2, 63–65 (2012).
  31. J. D. R. Valera, J. D. C. Jones, and A. F. Doval, “Whole-field vibration phase measurement with electronic speckle pattern interferometry (espi),” Proc. SPIE2248, 241–248 (1994). [CrossRef]
  32. Z. Wang and H. Ma, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Opt. Eng.45, 045601 (2006). [CrossRef]
  33. M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt.45, 8722–8732 (2006). [CrossRef] [PubMed]
  34. A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt.46, 6120–6126 (2007). [CrossRef] [PubMed]
  35. K. Pokorski and K. Patorski, “Comprehensive fringe pattern processing using continuous wavelet transform,” Fringe 2013, doi:33 pp. 225–228 (Springer-VerlagBerlin Heidelberg, 2014). [CrossRef]
  36. J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-Dimensional Wavelets and their Relatives (Cambridge University, 2008).
  37. J. Ma, Z. Wang, M. Vo, and B. Pan, “Wavelet selection in two-dimensional continuous wavelet transform technique for optical fringe pattern analysis,” J. Opt.14, 065403 (2012). [CrossRef]
  38. J. Ma, Z. Wang, M. Vo, and L. Luu, “Parameter discretization in two-dimensional continuous wavelet transform for fast fringe pattern analysis,” Appl. Opt.50, 6399–6408 (2011). [CrossRef] [PubMed]
  39. X. Wang, J. Gao, and W. Chen, “A new tiling scheme for 2-d continuous wavelet transform with different rotation parameters at different scales resulting in a tighter frame,” IEEE Signal Process. Lett.19, 407–410 (2012). [CrossRef]
  40. J. dErrico, “Inpaint nans,” http://www.mathworks.com/matlabcentral/fileexchange/4551 (2004).
  41. J. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process.16, 698–709 (2007). [CrossRef] [PubMed]
  42. L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng.48, 141–148 (2010). [CrossRef]
  43. J. Ma, Z. Wang, B. Pan, T. Hoang, M. Vo, and L. Luu, “Two-dimensional continuous wavelet transform for phase determination of complex interferograms,” Appl. Opt.50, 2425–2430 (2011). [CrossRef] [PubMed]
  44. P. S. Theocaris, Moire Fringes in Strain Analysis (Pergamon, 1969).
  45. K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, 1993).
  46. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1959).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited