OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22705–22716

Long-range coupling of silicon photonic waveguides using lateral leakage and adiabatic passage

A. P. Hope, T. G. Nguyen, A. D. Greentree, and A. Mitchell  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22705-22716 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2712 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new approach to long range coupling based on a combination of adiabatic passage and lateral leakage in thin shallow ridge waveguides on a silicon photonic platform. The approach enables transport of light between two isolated waveguides through a mode of the silicon slab that acts as an optical bus. Due to the nature of the adiabatic protocol, the bus mode has minimal population and the transport is highly robust. We prove the concept and examine the robustness of this approach using rigorous modelling. We further demonstrate the utility of the approach by coupling power between two waveguides whilst bypassing an intermediate waveguide. This concept could form the basis of a new interconnect technology for silicon integrated photonic chips.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

Original Manuscript: July 4, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: September 5, 2013
Published: September 19, 2013

A. P. Hope, T. G. Nguyen, A. D. Greentree, and A. Mitchell, "Long-range coupling of silicon photonic waveguides using lateral leakage and adiabatic passage," Opt. Express 21, 22705-22716 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on insulator fabricated with CMOS technology,” J. Lightwave Technol.23, 401, (2005). [CrossRef]
  2. R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012). [CrossRef]
  3. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009). [CrossRef]
  4. A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008). [CrossRef] [PubMed]
  5. P. Koonath and B. Jalali, “Multilayer 3-D photonics in silicon,” Opt. Express15, 12686–12691 (2007). [CrossRef] [PubMed]
  6. W. Bogaerts, P. Dumon, D. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32, 2801–2803 (2007). [CrossRef] [PubMed]
  7. N. Dalvand, T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Thin-ridge Silicon-on-Insulator waveguides with directional control of lateral leakage radiation,” Opt. Express19, 5635–5643 (2011). [CrossRef] [PubMed]
  8. M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.19(6), 429–431 (2007). [CrossRef]
  9. K. Kakihara, K. Saitoh, and M. Koshiba, “Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides,” J. Light. Tech.27(23), 5492–5499 (2009). [CrossRef]
  10. D. Dai, Z. Wang, N. Julian, and J. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express18, 27404–27415 (2010). [CrossRef]
  11. N. Dalvand, T. G. Nguyen, T. L. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” Photon. Technol. Lett.25, 163–166 (2013). [CrossRef]
  12. J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).
  13. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-inducted population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763209 (2001). [CrossRef]
  14. K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the ′ tunneling interaction,” Phys. Rev. A70, 023606 (2004). [CrossRef]
  15. A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004). [CrossRef]
  16. E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun.258, 30–34 (2006). [CrossRef]
  17. S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007). [CrossRef]
  18. S. Longhi, “Optical realization of multilevel adiabatic population transfer in curved waveguide arrays,” Phys. Lett. A, 359(2), 166–170 (2006). [CrossRef]
  19. G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008). [CrossRef]
  20. D. Petrosyan and P. Lambropoulos, “Coherent population transfer in a chain of tunnel coupled quantum dots”, Optics Communications, 264(2), 419–425 (2006). [CrossRef]
  21. L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009). [CrossRef]
  22. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149, 463–468 (1988). [CrossRef]
  23. C. E. Carroll and F. T. Hioe, “Adiabatic processes in three-level systems,” Phys. Rev. A42, 1522 (1990). [CrossRef] [PubMed]
  24. E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett.99, 033002 (2007). [CrossRef] [PubMed]
  25. J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A87, 063820 (2013). [CrossRef]
  26. J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008). [CrossRef]
  27. I. Kamleitner, J. Cresser, and J. Twamley, “Adiabatic information transport in the presence of decoherence,” Phys. Rev. A77, 032331 (2008). [CrossRef]
  28. J. Rech and S. Kehrein, “Effect of measurement backaction on adiabatic coherent electron transport,” Phys. Rev. Lett.106, 136808 (2011). [CrossRef] [PubMed]
  29. K. Chung, T. J. Karle, M. Rab, A. D. Greentree, and S. Tomljenovic-Hanic, “Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage,” Opt. Express20, 23108 (2012). [CrossRef] [PubMed]
  30. T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett.21, 486–488 (2009). [CrossRef]
  31. R. Tummidi, T. Nguyen, A. Mitchell, and T. Koch, “An ultra-compact waveguide polarizer based on ‘anti-magic’ widths,” in “Group IV Photonics (GFP), 8th IEEE Int. Conf.,” 104–106 (2011). [CrossRef]
  32. R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010). [CrossRef]
  33. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24, 4600–4615 (2006). [CrossRef]
  34. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express21, 11869–11876 (2013). [CrossRef] [PubMed]
  35. T. Meany, M. Delanty, S. Gross, G. D. Marshall, M. J. Steel, and M.J. Withford, “Non-classical interference in integrated 3D multiports,” Opt. Express20, 26895–26905 (2012). [CrossRef] [PubMed]
  36. T. Peters and T. Halfmann, “Stimulated Raman adiabatic passage via the ionization continuum in helium: Experiment and theory,” Opt. Commun.271, 475–486 (2007). [CrossRef]
  37. N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D4, 15 (1998). [CrossRef]
  38. F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Adiabatic transfer of light via a continuum in optical waveguides,” Opt. Lett.34, 2405–2407 (2009). [CrossRef] [PubMed]
  39. T. Peters, L. P. Yatsenko, and T. Halfmann, “Experimental demonstration of selective coherent population transfer via a continuum,” Phys. Rev. Lett.95, 103601 (2005). [CrossRef] [PubMed]
  40. R. G. Unanyan, B. W. Shore, and K. Bergmann, “Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors,” Phys. Rev. A59, 02910 (1999). [CrossRef]
  41. A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited