OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22754–22761

Determination of the effective refractive index of nanoparticulate ITO layers

M. Baum, I. Alexeev, M. Latzel, S. H. Christiansen, and M. Schmidt  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22754-22761 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanoparticles of transparent conducting oxides, such as indium tin oxide, can be used in printing techniques to generate functional layers for various optoelectronic devices. Since these deposition methods do not create fully consolidated films, the optical properties of such layers are expected to be notably different from those of the bulk material and should be characterized on their own. In this work we present a way to measure the effective refractive index of a particulate ITO layer by refraction of light. The obtained data points are used to identify an accurate layer model for spectroscopic ellipsometry. In this way the complex refractive index of the particle layer is determined in a wide spectral range from ultra violet to near infrared.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: June 13, 2013
Revised Manuscript: August 9, 2013
Manuscript Accepted: August 19, 2013
Published: September 19, 2013

M. Baum, I. Alexeev, M. Latzel, S. H. Christiansen, and M. Schmidt, "Determination of the effective refractive index of nanoparticulate ITO layers," Opt. Express 21, 22754-22761 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Manifacier, “Thin metallic oxides as transparent conductors,” Thin Solid Films90(3), 297–308 (1982). [CrossRef]
  2. M. Groß, Druckbare, nanopartikuläre Indiumzinnoxidschichten für optoelektronische Anwendungen, Dissertation, Friedrich-Alexander-Universität Erlangen-Nuremberg, 2009, p.33.
  3. T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films203(2), 297–302 (1991). [CrossRef]
  4. J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000). [CrossRef]
  5. T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin Solid Films270(1-2), 37–42 (1995). [CrossRef]
  6. M. Baum, S. Polster, M. P. M. Jank, I. Alexeev, L. Frey, and M. Schmidt, “Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget,” Appl. Phys., A Mater. Sci. Process.107(2), 269–273 (2012). [CrossRef]
  7. M. Baum, H. Kim, I. Alexeev, A. Piqué, and M. Schmidt, “Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers,” Appl. Phys., A Mater. Sci. Process.111(3), 799–805 (2013). [CrossRef]
  8. J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin, “Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays,” Nat. Nanotechnol.6(6), 348–352 (2011). [CrossRef] [PubMed]
  9. S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010). [CrossRef]
  10. M. Hwang, B. Jeong, J. Moon, S.-K. Chun, and J. Kim, “Inkjekt-printing of indium tin oxide (ITO) films for transparent conducting electrodes,” Mater. Sci. Eng. B176(14), 1128–1131 (2011). [CrossRef]
  11. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys.24, 636–664 (1935).
  12. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999). [CrossRef]
  13. I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3,” Phys. Rev. B30, 3240–3249 (1984).
  14. M. Baum, I. Alexeev, and M. Schmidt, “Laser Treatment of ITO and ZnO Nanoparticles for the Production of Thin Conducting Layers on Transparent Substrates,” J. Laser Micro/Nanoeng.6(3), 191–194 (2011). [CrossRef]
  15. J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003). [CrossRef]
  16. Eugene Hecht, Optics. 4th Edition (Addison Wesley Longman, Inc., USA, 2002).
  17. M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012). [CrossRef]
  18. A. Martínez, M. Sánchez-López, and I. Moreno, “Phasor analysis of binary diffraction gratings with different fill factors,” Eur. J. Phys.28(5), 805–816 (2007). [CrossRef]
  19. M. Sánchez-López, I. Moreno, and A. Martínez-García, “Teaching diffraction gratings by means of a phasor analysis,” Proc. SPIE ETOP (2009). [CrossRef]
  20. Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006). [CrossRef]
  21. E. W. Tillotson, “The Relation of the Refractive Index of Soda Lime Glasses to Their Chemical Composition,” J. Ind. Eng. Chem.4(4), 246–249 (1912). [CrossRef]
  22. H. A. Lorentz, Encyclopädie der mathematischen Wissenschaften (B.G. Teubner, 1904).
  23. P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys.306(3), 566–613 (1900). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited