OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22762–22772

Effect of bending on surface plasmon resonance spectrum in microstructured optical fibers

Maciej Napiorkowski and Waclaw Urbanczyk  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22762-22772 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyzed the effect of fiber bending on spectral position and strength of the surface plasmon resonance arising due to the interaction of the fundamental mode guided in the core of the microstructured fiber with a metal layer. Fully vectorial simulations were performed using the finite element method with perfectly matched layers boundary conditions. To conduct the simulations, we adopted the concept of an equivalent bent fiber developed recently on the ground of transformation optics formalism. In this approach, the bent fiber with a metal layer is replaced by an equivalent fiber with appropriate spatial distributions of electric permittivity and magnetic permeability tensors. The obtained results explain the mechanisms responsible for the change in the SPR spectrum induced by bending and by the geometry of the microstructured fiber. By modifying the holes layout in the microstructured cladding, we designed the fiber, in which the depth of the surface plasmon resonance is in a high degree tunable by bending.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 29, 2013
Revised Manuscript: August 3, 2013
Manuscript Accepted: August 5, 2013
Published: September 19, 2013

Maciej Napiorkowski and Waclaw Urbanczyk, "Effect of bending on surface plasmon resonance spectrum in microstructured optical fibers," Opt. Express 21, 22762-22772 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. Biol. Chem.54, 3–15 (1999).
  3. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003). [CrossRef] [PubMed]
  4. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004). [CrossRef]
  5. U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, and M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques11(5), 620–627 (1991). [PubMed]
  6. E. Kretschmann, “Determination of optical Constants of metals by excitation of surface plasmons,” Z. Phys.241(4), 313–324 (1971). [CrossRef]
  7. R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sens. Actuat,” Biol. Chem.51, 311–315 (1998).
  8. J. van Gent, P. V. Lambeck, H. J. M. Kreuwel, G. J. Gerritsma, E. J. R. Sudhölter, D. N. Reinhoudt, and T. J. A. Popma, “Optimization of a Chemooptical Surface Plasmon Resonance Based Sensor,” Appl. Opt.29(19), 2843–2849 (1990). [CrossRef] [PubMed]
  9. A. Diez, M. V. Andres, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuat. Biol. Chem.73, 95–99 (2001).
  10. Y. C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett.30(17), 2218–2220 (2005). [CrossRef] [PubMed]
  11. R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D41(9), 095106 (2008). [CrossRef]
  12. K. Takagi, H. Sasaki, A. Seki, and K. Watanabe, “Surface plasmon resonances of a curved hetero-core optical fiber sensor,” Sens. Actuat. A.161, 1–5 (2010).
  13. M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J. L. Santos, and H. Ludvigsen, “Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber,” Opt. Express19(15), 13980–13988 (2011). [CrossRef] [PubMed]
  14. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16(12), 8427–8432 (2008). [CrossRef] [PubMed]
  15. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett.34(24), 3890–3892 (2009). [CrossRef] [PubMed]
  16. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B24(6), 1423 (2007). [CrossRef]
  17. A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B26(8), 1550–1557 (2009). [CrossRef]
  18. A. Hassani and M. Skorobogatiy, “Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes,” Opt. Express16(25), 20206–20214 (2008). [CrossRef] [PubMed]
  19. M. Skorobogatiy and A. V. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett.89(14), 143518 (2006). [CrossRef]
  20. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express15(18), 11413–11426 (2007). [CrossRef] [PubMed]
  21. D. M. Shyroki, “Exact equivalent straight waveguide model for bent and twisted waveguides,” IEEE Trans. Microw. Theory Tech.56(2), 414–419 (2008). [CrossRef]
  22. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14(21), 9794–9804 (2006). [CrossRef] [PubMed]
  23. J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express13(16), 6015–6022 (2005). [CrossRef] [PubMed]
  24. G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt.12(7), 075402 (2010). [CrossRef]
  25. M. Heiblum and J. Harris, “Analysis of Curved Optical-Waveguides by Conformal Transformation,” IEEE J. Quantum Electron.11(2), 75–83 (1975). [CrossRef]
  26. M. Bass, Handbook of Optics, 3rd edition, Vol. 4: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).
  27. K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane,” Anal. Chem.74(24), 6323–6333 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited