OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22829–22833

Overcoming Si3N4 film stress limitations for high quality factor ring resonators

Kevin Luke, Avik Dutt, Carl B. Poitras, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22829-22833 (2013)
http://dx.doi.org/10.1364/OE.21.022829


View Full Text Article

Enhanced HTML    Acrobat PDF (2676 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Silicon nitride (Si3N4) ring resonators are critical for a variety of photonic devices. However the intrinsically high film stress of silicon nitride has limited both the optical confinement and quality factor (Q) of ring resonators. We show that stress in Si3N4 films can be overcome by introducing mechanical trenches for isolating photonic devices from propagating cracks. We demonstrate a Si3N4 ring resonator with an intrinsic quality factor of 7 million, corresponding to a propagation loss of 4.2 dB/m. This is the highest quality factor reported to date for high confinement Si3N4 ring resonators in the 1550 nm wavelength range.

© 2013 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: June 25, 2013
Revised Manuscript: August 19, 2013
Manuscript Accepted: August 25, 2013
Published: September 20, 2013

Citation
Kevin Luke, Avik Dutt, Carl B. Poitras, and Michal Lipson, "Overcoming Si3N4 film stress limitations for high quality factor ring resonators," Opt. Express 21, 22829-22833 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22829


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron.6(6), 1312–1317 (2000). [CrossRef]
  2. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron.12(6), 1699–1705 (2006). [CrossRef]
  3. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  5. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  6. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  7. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  8. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002). [CrossRef]
  9. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445(7128), 627–630 (2007). [CrossRef] [PubMed]
  10. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008). [CrossRef] [PubMed]
  11. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express15(22), 14376–14381 (2007). [CrossRef] [PubMed]
  12. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17(17), 14543–14551 (2009). [CrossRef] [PubMed]
  13. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011). [CrossRef] [PubMed]
  14. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  15. K. H. Nam, I. H. Park, and S. H. Ko, “Patterning by controlled cracking,” Nature485(7397), 221–224 (2012). [CrossRef] [PubMed]
  16. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol.20(11), 1968–1975 (2002). [CrossRef]
  17. M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett.32(20), 2954–2956 (2007). [CrossRef] [PubMed]
  18. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited