OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22862–22867

Microwave Photonics: Current challenges towards widespread application

José Capmany, Guifang Li, Christina Lim, and Jianping Yao  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 22862-22867 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microwave Photonics, a symbiotic field of research that brings together the worlds of optics and radio frequency is currently facing several challenges in its transition from a niche to a truly widespread technology essential to support the ever-increasing values for speed, bandwidth, processing capability and dynamic range that will be required in next generation hybrid access networks. We outline these challenges, which are the subject of the contributions to this focus issue.

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.5625) Fiber optics and optical communications : Radio frequency photonics

Original Manuscript: September 12, 2013
Published: September 23, 2013

Virtual Issues
Microwave Photonics (2013) Optics Express

José Capmany, Guifang Li, Christina Lim, and Jianping Yao, "Microwave Photonics: Current challenges towards widespread application," Opt. Express 21, 22862-22867 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech.50(3), 877–887 (2002). [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  3. J. Yao, “Microwave Photonics,” J. Lightwave Technol.27(3), 314–335 (2009). [CrossRef]
  4. “See special Technology Focus on Microwave Photonics,” Nat. Photonics1, 723–736 (2011).
  5. H. Al-Raweshidi and S. Komaki, eds., Radio Over Fiber Technologies for Mobile Communications Networks, Artech House, Boston (2002).
  6. M. Mjeku and N. J. Gomes, “Performance analysis of 802.11e transmission bursting in fiber-fed networks,” in Radio and Wireless Symp., 133–136 (2008).
  7. M. Sotom, B. Bénazet, A. Le Kernec, and M. Maignan, “Microwave Photonic Technologies for Flexible Satellite Telecom Payloads” in Proc. 35th European Conference on Optical Communication, 2009. ECOC '09. 1–4, Vienna (2009).
  8. W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies, Artech House, San Diego, (1998).
  9. M. Crisp, R. V. Penty, I. H. White, and A. Bell, “Wideband Radio over Fiber Distributed Antenna Systems for Energy Efficient In-Building Wireless Communications,” In Proc. 2010 IEEE 71st Vehicular Technology Conference, Taipei, Taiwan, 1–5 (2010). [CrossRef]
  10. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave Photonic signal processing,” J. Lightwave Technol.31(4), 571–586 (2013). [CrossRef]
  11. R. T. Schermer, F. Bucholtz, and C. A. Villarruel, “Continuously-tunable microwave photonic true-time-delay based on a fiber-coupled beam deflector and diffraction grating,” Opt. Express19(6), 5371–5378 (2011). [CrossRef] [PubMed]
  12. M. Popov, “The convergence of wired and wireless services delivery in access and home networks”, Invited paper, Conference on Optical Fiber Communication (OFC/NFOEC), (2010). [CrossRef]
  13. A. M. Koonen, M. G. Larrodé, A. Ng'oma, K. Wang, H. Yang, Y. Zheng, and E. Tangdiongga, “Perspectives of Radio-over-Fiber Technologies, ” in Optical Fiber Communication Conference, paper OThP3, (2008).
  14. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun.284(15), 3669–3692 (2011). [CrossRef]
  15. J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun.284(15), 3723–3736 (2011). [CrossRef]
  16. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett.27(15), 1345–1347 (2002). [CrossRef] [PubMed]
  17. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003). [CrossRef]
  18. H. Chi and J. P. Yao, “All-fiber chirped microwave pulses generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech.55(9), 1958–1963 (2007). [CrossRef]
  19. C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008). [CrossRef]
  20. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010). [CrossRef]
  21. P. Samadi, L. R. Chen, C. L. Callender, P. Dumais, S. Jacob, and D. Celo, “RF arbitrary waveform generation using tunable planar lightwave circuits,” Opt. Commun.284(15), 3737–3741 (2011). [CrossRef]
  22. C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008). [CrossRef]
  23. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol.23(2), 702–723 (2005). [CrossRef]
  24. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006). [CrossRef]
  25. M. Li, D. Janner, J. P. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17(22), 19798–19807 (2009). [CrossRef] [PubMed]
  26. M. Ferrara, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS compatible all-optical integrator,” Nat. Commun.1, 1028 (2010), doi:. [CrossRef]
  27. M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett.34(3), 334–336 (2009). [CrossRef] [PubMed]
  28. A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microw. Theory Tech.43(9), 2311–2317 (1995). [CrossRef]
  29. H. Shahoei and J. P. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express20(13), 14009–14014 (2012). [CrossRef] [PubMed]
  30. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012). [CrossRef] [PubMed]
  31. H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett.31(21), 1848–1849 (1995). [CrossRef]
  32. T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Performance analysis of optimized millimeter-wave fiber radio links,” IEEE Trans. Microw. Theory Tech.54(2), 921–928 (2006). [CrossRef]
  33. J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett.28, 2309–2311 (1992).
  34. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett.33(1), 74–75 (1997). [CrossRef]
  35. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett.33(6), 512–513 (1997). [CrossRef]
  36. Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006). [CrossRef]
  37. T. Ismail, C.-P. Liu, J. E. Mitchell, and A. J. Seeds, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” J. Lightwave Technol.25(11), 3274–3282 (2007). [CrossRef]
  38. S. H. Lee, J. M. Kang, Y. Y. Won, H. C. Kwon, and S. K. Han, “Linearization of RoF optical source by using light-injected gain modulation,” Proc. of Microwave Photonics, 265–268. Seoul, Korea (2005).
  39. D. Novak, T. Clark, S. O’Connor, D. Oursler, and R. Waterhouse, “High performance, compact RF photonic transmitter with feedforward linearization,” Proc. Military Communication Conference 2010 (Milcom2010), 880–884 (2010). [CrossRef]
  40. C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio,” Electron. Lett.37(16), 1043–1045 (2001). [CrossRef]
  41. H. Toda, T. Yamashita, K.-I. Kitayama, and T. Kuri, “A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency,” Proc. of Microwave Photonics (MWP), 85–88, Long Beach, USA (2001)
  42. X. Pang, A. Caballero, A. Dogadeev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pederson, D. Zibar, X. Yu, and I. T. Monroy, “25 Gb/s QPSK hybrid fiber-wireless transmission in the W-band (75-110 GHz) with remote antenna unit for in-building wireless networks,” IEEE Photonics Journal4(3), 691–698 (2012). [CrossRef]
  43. D. Zibar, R. Sambaraju, A. Caballero, J. Herrera, U. Westergren, A. Walber, J. B. Jensen, J. Marti, and I. T. Monroy, “High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM,” IEEE Photon. Technol. Lett.23(12), 810–812 (2011). [CrossRef]
  44. A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz band wireless link using radio-over-fiber technologies,” J. Lightwave Technol.26(15), 2338–2344 (2008). [CrossRef]
  45. F.-M. Kuo, C.-B. Huang, J.-W. Shi, N. Chen, H.-P. Chuang, J. E. Bowers, and C. Pang, “Remotely up-converted 20-Gbit/s error-free wireless on-off-keying data transmission at W-band using an ultra-wideband photonic transmitter-mixer,” IEEE Photonics Journal3(2), 209–219 (2011). [CrossRef]
  46. A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, “40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express19(26), B56–B63 (2011). [CrossRef] [PubMed]
  47. X. Li, Z. Dong, J. Yu, N. Chi, Y. Shao, and G. K. Chang, “Fiber wireless transmission system of 108 Gb/s data over 80 km fiber and 2x2 MIMO wireless links at 100 GHz W-band frequency,” Opt. Lett.37, 5106–5108 (2012). [CrossRef] [PubMed]
  48. J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, and G. K. Chang, “Multichannel 120 Gb/s data transmission over 2x2 MIMO fiber-wireless link at W-band,” IEEE Photon. Technol. Lett.25(8), 780–783 (2013). [CrossRef]
  49. Z. Dong, J. Yu, X. Li, G. K. Chang, and Z. Cao, “Integration of 112 Gb/s PDM-16QAM wireline and wireless data delivery in millimeter wave RoF system,” Proc. OFC2013, Anaheim, USA, 2013, OM3D.2. [CrossRef]
  50. C. Marpaung, R. Roeloffzen, A. Heideman, S. Leinse, Sales, and J. Capmany, “Integrated MicrowavePhotonics,” Laser Photon. Rev.7(4), 506–538 (2013). [CrossRef]
  51. E. J. Norberg, R. S. Guzzon, J. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InPInGaAsP,” J. Lightwave Technol.29(11), 1611–1619 (2011). [CrossRef]
  52. H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated Microwave Photonic Filter on a Hybrid Silicon Platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010). [CrossRef]
  53. P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express18(23), 23784–23789 (2010). [CrossRef] [PubMed]
  54. J. Lloret, J. Sancho, M. Pu, I. Gasulla, K. Yvind, S. Sales, and J. Capmany, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express19(13), 12402–12407 (2011). [CrossRef] [PubMed]
  55. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010). [CrossRef] [PubMed]
  56. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express18(6), 6156–6163 (2010). [CrossRef] [PubMed]
  57. P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, and M. Alouini, “Time delay generation at high frequency using SOA based slow and fast light,” Opt. Express19(22), 21180–21188 (2011). [CrossRef] [PubMed]
  58. M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express18(6), 6172–6182 (2010). [CrossRef] [PubMed]
  59. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011). [CrossRef] [PubMed]
  60. S. Combrié, P. Coman, N. V. Q. Tran, M. Patterson, G. Demand, S. Hughes, R. Gabet, Y. Jaouren, J. Bourderionnet, and A. De Rossi, “Toward a miniature optical true-time delay line”, SPIE Newsroom, (2010).
  61. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectralshaper,” Nat. Photonics4(2), 117–122 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited