OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22918–22936

Microwave photonic signal processing

R. A. Minasian, E. H. W. Chan, and X. Yi  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22918-22936 (2013)
http://dx.doi.org/10.1364/OE.21.022918


View Full Text Article

Enhanced HTML    Acrobat PDF (1796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic signal processing offers the advantages of large time-bandwidth capabilities to overcome inherent electronic limitations. In-fibre signal processors are inherently compatible with fibre optic microwave systems that can integrate with wireless antennas, and can provide connectivity with in-built signal conditioning and electromagnetic interference immunity. Recent methods in wideband and adaptive signal processing, which address the challenge of realising programmable microwave photonic phase shifters and true-time delay elements for phased array beamforming; ultra-wideband Hilbert transformers; single passband, widely tunable, and switchable microwave photonic filters; and ultra-wideband microwave photonic mixers, are described. In addition, a new microwave photonic mixer structure is presented, which is based on using the inherent frequency selectivity of the stimulated Brillouin scattering loss spectrum to suppress the carrier of a dual-phase modulated optical signal. Results for the new microwave photonic mixer demonstrate an extremely wide bandwidth operation of 0.2 to 20 GHz and a large conversion efficiency improvement compared to the conventional microwave photonic mixer.

© 2013 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(350.4010) Other areas of optics : Microwaves
(070.2615) Fourier optics and signal processing : Frequency filtering
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Signal Generation and Processing

History
Original Manuscript: June 4, 2013
Revised Manuscript: August 8, 2013
Manuscript Accepted: August 27, 2013
Published: September 23, 2013

Virtual Issues
Microwave Photonics (2013) Optics Express

Citation
R. A. Minasian, E. H. W. Chan, and X. Yi, "Microwave photonic signal processing," Opt. Express 21, 22918-22936 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22918


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006). [CrossRef]
  2. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006). [CrossRef]
  3. J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009). [CrossRef]
  4. D. Dolfi, “New trends in optoelectronics for radar, E.W. and communication systems,” IEEE International Topical Meeting on Microwave Photonics (MWP 2011) 7 (2011).
  5. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express18(6), 6156–6163 (2010). [CrossRef] [PubMed]
  6. S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett.37(21), 4483–4485 (2012). [CrossRef] [PubMed]
  7. H. Shahoei and J. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express20(13), 14009–14014 (2012). [CrossRef] [PubMed]
  8. J. Shen, G. Wu, W. Zou, and J. Chen, “A photonic RF phase shifter based on a dual-parallel Mach-Zehnder modulator and an optical filter,” App. Phy. Express5(7), 072502 (2012). [CrossRef]
  9. E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightwave Technol.30(23), 3672–3678 (2012). [CrossRef]
  10. X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett.23(18), 1286–1288 (2011). [CrossRef]
  11. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol.26(1), 73–78 (2008). [CrossRef]
  12. J. Schröder, O. Brasier, T. D. Vo, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “Simultaneous multi-channel OSNR monitoring with a wavelength selective switch,” Opt. Express18(21), 22299–22304 (2010). [CrossRef] [PubMed]
  13. F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: A survey,” J. Disp. Technol.6(10), 443–454 (2010). [CrossRef]
  14. X. Yi, L. Li, T. X. H. Huang, and R. A. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett.37(4), 608–610 (2012). [CrossRef] [PubMed]
  15. M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett.22(21), 1559–1561 (2010). [CrossRef]
  16. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett.38(5), 727–729 (2013). [CrossRef] [PubMed]
  17. T. X. H. Huang, X. Yi, and R. A. Minasian, “Microwave photonic quadrature filter based on an all-optical programmable Hilbert transformer,” Opt. Lett.36(22), 4440–4442 (2011). [CrossRef] [PubMed]
  18. J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photon. Technol. Lett.22(17), 1276–1278 (2010). [CrossRef]
  19. J. Palaci, P. Perez-Millan, G. E. Villanueva, J. L. Cruz, M. V. Andres, J. Marti, and B. Vidal, “Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett.22(19), 1467–1469 (2010). [CrossRef]
  20. W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012). [CrossRef]
  21. T. Chen, X. Yi, L. Li, and R. A. Minasian, “Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,” Opt. Lett.37(22), 4699–4701 (2012). [CrossRef] [PubMed]
  22. A. Loayssa, D. Benito, and M. José Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol.8(1), 24–42 (2002). [CrossRef]
  23. B. Vidal, T. Mengual, and J. Marti, “Photonic microwave filter with single bandpass response based on Brillouin processing and SSB-SC,” IEEE International Topical Meeting on Microwave Photonics (MWP2009) 1–4 (2009).
  24. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011). [CrossRef]
  25. W. Zhang and R. A. Minasian, “Ultra-wide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.24(14), 1182–1184 (2012). [CrossRef]
  26. M. Bolea, J. Mora, L. R. Chen, and J. Capmany, “Highly chirped reconfigurable microwave photonic filter,” IEEE Photon. Technol. Lett.23(17), 1192–1194 (2011). [CrossRef]
  27. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express19(19), 18423–18429 (2011). [CrossRef] [PubMed]
  28. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses,” Opt. Express20(24), 26929–26934 (2012). [CrossRef] [PubMed]
  29. L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Shifted dispersion-induced radio-frequency fading in microwave photonic filters using a dual-input Mach-Zehnder electro-optic modulator,” Opt. Lett.38(7), 1164–1166 (2013). [CrossRef] [PubMed]
  30. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010). [CrossRef]
  31. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012). [CrossRef]
  32. L. A. Coldren, “Photonic integrated circuits for microwave photonics,” IEEE International Topical Meeting on Microwave Photonics (MWP 2010) 1–4 (2010). [CrossRef]
  33. H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010). [CrossRef]
  34. K. Y. Tu, M. S. Rasras, D. M. Gill, S. S. Patel, Y. K. Chen, A. E. White, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Silicon RF-photonic filter and down-converter,” J. Lightwave Technol.28(20), 3019–3028 (2010). [CrossRef]
  35. A. Byrnes, R. Pant, E. Li, D. Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express20(17), 18836–18845 (2012). [CrossRef] [PubMed]
  36. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.1–9 (2012). [CrossRef]
  37. W. Zhang and R. A. Minasian, “Switchable and tunable microwave photonic Brillouin-based filter,” IEEE Photonics J.4(5), 1443–1455 (2012). [CrossRef]
  38. S. R. O’Connor, M. C. Gross, M. L. Dennis, and T. R. Clark, Jr., “Experimental demonstration of RF photonic downconversion from 4-40 GHz,” IEEE International Topical Meeting on Microwave Photonics (MWP 2009) 1–3 (2009).
  39. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear millimetre-wave over fiber transmitter will subcarrier upconversion,” Conference on Lasers and Electro-optics (CLEO 2011) 1–2 (2011). [CrossRef]
  40. Y. Li, R. Wang, J. S. Klamkin, L. A. Johansson, P. R. Herczfeld, and J. E. Bowers, “Quadratic electrooptic effect for frequency down-conversion,” IEEE Trans. Microw. Theory Tech.58(3), 665–673 (2010). [CrossRef]
  41. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Tech.41(12), 2383–2391 (1993). [CrossRef]
  42. V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express19(2), 883–895 (2011). [CrossRef] [PubMed]
  43. E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high conversion efficiency,” J. Lightwave Technol.30(23), 3580–3585 (2012). [CrossRef]
  44. M. E. Manka, “Microwave photonics electronic warfare technologies for Australian defence,” IEEE International Topical Meeting on Microwave Photonics (MWP 2008) 1–2 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited