OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1448–1455

Mode area scaling with multi-trench rod-type fibers

Deepak Jain, Catherine Baskiotis, and Jayanta Kumar Sahu  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1448-1455 (2013)
http://dx.doi.org/10.1364/OE.21.001448


View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel all-solid rod-type fiber structure that presents a cylindrical symmetry and low refractive-index contrasts. Effectively single-mode propagation for the fundamental mode is ensured thanks to resonant couplings between Higher Order Modes (HOMs) and cladding modes. Numerical simulations demonstrate the possibility of achieving a fundamental mode effective area as large as 5000µm2 at a wavelength of 1.06μm in fibers ensuring a high leakage loss ratio (>100) between the HOMs and the fundamental mode while keeping the fundamental mode leakage losses at a level lower than 0.2dB/m. Further scaling to an effective area of 12,200µm2 at 1.06μm in an effectively single-mode fiber is also presented by exploiting the power delocalization of several HOMs on top of the high-leakage loss filtering.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 12, 2012
Revised Manuscript: December 29, 2012
Manuscript Accepted: January 3, 2013
Published: January 14, 2013

Citation
Deepak Jain, Catherine Baskiotis, and Jayanta Kumar Sahu, "Mode area scaling with multi-trench rod-type fibers," Opt. Express 21, 1448-1455 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1448


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” ASSP Paper AWA1 (2010).
  2. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004). [CrossRef] [PubMed]
  3. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25(7), 442–444 (2000). [CrossRef] [PubMed]
  4. C. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” CLEO paper CTuBB3 (2007).
  5. A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008). [CrossRef]
  6. M. Devautour, P. Roy, and S. Fevrier, “3D Modeling of modal competition in fiber laser: application to HOM suppression in multi-layered fiber,” Joint CLEO Poster Session II (JWA) (2009).
  7. E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009). [CrossRef]
  8. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express20(14), 15061–15070 (2012). [CrossRef] [PubMed]
  9. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express12(7), 1313–1319 (2004). [CrossRef] [PubMed]
  10. L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All glass leakage channel fibers with highly fluorine-doped silica pump cladding,” IEEE J. Sel. Top. Quantum Electron.15, 47–53 (2009). [CrossRef]
  11. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14(1), 69–81 (2006). [CrossRef] [PubMed]
  12. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express13(4), 1055–1058 (2005). [CrossRef] [PubMed]
  13. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express14(7), 2715–2720 (2006). [CrossRef] [PubMed]
  14. C. D. Brooks and F. D. Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett.89(11), 111119 (2006), http://apl.aip.org/resource/1/applab/v89/i11/p111119_s1 . [CrossRef]
  15. M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express20(7), 7263–7273 (2012). [CrossRef] [PubMed]
  16. L. Dong, J. Li, H. A. McKay, A. Marcinkevicius, B. K. Thomas, M. Moore, L. Fu, and M. E. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 μm,” CLEO post-deadline paper CPDB6 (2008).
  17. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express17(11), 8962–8969 (2009). [CrossRef] [PubMed]
  18. J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. & App. 1, 1–5 (2012). http://www.nature.com/lsa/journal/v1/n4/abs/lsa20128a.html
  19. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37(6), 1073–1075 (2012). [CrossRef] [PubMed]
  20. Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibers,” COMPEL27(1), 95–109 (2008). [CrossRef]
  21. G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express14(12), 5682–5687 (2006). [CrossRef] [PubMed]
  22. F. Jansen, F. Stutzki, H. J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express18(26), 26834–26842 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited