OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1465–1472

Asymmetric wave propagation in planar chiral fibers

Dana Shemuly, Zachary M. Ruff, Alexander M. Stolyarov, Grisha Spektor, Steven G. Johnson, Yoel Fink, and Ofer Shapira  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1465-1472 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4058 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the realization of a two-dimensional chiral optical waveguide with an infinite translational symmetry that exhibits asymmetric wave propagation. The low-symmetry geometry of the cross-section that lacks any rotational and mirror symmetries shows in-principal directional asymmetric polarization rotation. We use general symmetry arguments to provide qualitative analysis of the waveguide's eigenstates and numerically corroborate this using finite element simulation. We show that despite the only perturbative break of time-reversal symmetry via small modal losses, the structure supports a non-degenerate pair of co-rotating elliptical modes. We fabricated meters long fiber with a spiral structure and studied its optical properties.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 8, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 30, 2012
Published: January 14, 2013

Dana Shemuly, Zachary M. Ruff, Alexander M. Stolyarov, Grisha Spektor, Steven G. Johnson, Yoel Fink, and Ofer Shapira, "Asymmetric wave propagation in planar chiral fibers," Opt. Express 21, 1465-1472 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Tinoco and M. P. Freeman, “The optical activity of oriented copper helices, I. Experimental,” J. Phys. Chem.61(9), 1196–1200 (1957). [CrossRef]
  2. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007). [CrossRef] [PubMed]
  3. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007). [CrossRef]
  4. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)21(46), 4680–4682 (2009). [CrossRef]
  5. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009). [CrossRef] [PubMed]
  6. J. B. Pendry, “Time reversal and negative refraction,” Science322(5898), 71–73 (2008). [CrossRef] [PubMed]
  7. A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express16(17), 12559–12570 (2008). [CrossRef] [PubMed]
  8. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008). [CrossRef] [PubMed]
  9. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009). [CrossRef] [PubMed]
  10. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  11. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006). [CrossRef] [PubMed]
  12. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, (2nd ed. Princeton University Press, Princeton, Oxford, 2008).
  13. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, Massachusetts, 2000).
  14. L. Hecht and L. D. Barron, “Rayleigh and Raman optical activity from chiral surfaces,” Chem. Phys. Lett.225(4-6), 525–530 (1994). [CrossRef]
  15. L. R. Arnaut and L. E. Davis, “Dispersion characteristics of planar chiral structure,” in Proceedings of the International Conference on Electromagnetics in Advnaced Applications, Swanley, UK, 1995 (Nexus Media), 381–388.
  16. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009). [CrossRef]
  17. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7(7), 1996–1999 (2007). [CrossRef]
  18. E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  19. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  20. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(6), 066611 (2002). [CrossRef] [PubMed]
  21. M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, “Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates,” Opt. Express10(21), 1227–1243 (2002). [CrossRef] [PubMed]
  22. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002). [CrossRef] [PubMed]
  23. K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express12(8), 1510–1517 (2004). [CrossRef] [PubMed]
  24. D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express20(6), 6029–6035 (2012). [CrossRef] [PubMed]
  25. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010). [CrossRef] [PubMed]
  26. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)19(2), 207–210 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited