OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1520–1530

Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation

Ting Lei and Andrew W. Poon  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1520-1530 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1856 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulatorMultimode-interference (MMI) waveguide-basedARrayed opticalTweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.

© 2013 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(260.3160) Physical optics : Interference
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 29, 2012
Revised Manuscript: December 28, 2012
Manuscript Accepted: December 28, 2012
Published: January 14, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Ting Lei and Andrew W. Poon, "Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation," Opt. Express 21, 1520-1530 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE8225, 82250C (2012). [CrossRef]
  3. E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010). [CrossRef] [PubMed]
  4. H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface5(24), 671–690 (2008). [CrossRef] [PubMed]
  5. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005). [CrossRef] [PubMed]
  6. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997). [CrossRef] [PubMed]
  7. U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophys. J.82(3), 1537–1553 (2002). [CrossRef] [PubMed]
  8. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008). [CrossRef] [PubMed]
  9. Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett.89(14), 141108 (2006). [CrossRef]
  10. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996). [CrossRef]
  11. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003). [CrossRef] [PubMed]
  12. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  13. M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11(7), 1196–1205 (2011). [CrossRef] [PubMed]
  14. K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009). [CrossRef] [PubMed]
  15. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15(4), 1913–1922 (2007). [CrossRef] [PubMed]
  16. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express19(20), 18871–18884 (2011). [CrossRef] [PubMed]
  17. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1–6), 169–175 (2002). [CrossRef]
  18. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011). [CrossRef]
  19. T. Lei and A. W. Poon, “Silicon-on-insulator 100µm-core multimode interferometer waveguides for two-dimensional microparticle trapping and manipulation,” in 2012 IEEE 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 66–68.
  20. S. L. He, X. Y. Ao, and V. Romanov, “General properties of N x M self-images in a strongly confined rectangular waveguide,” Appl. Opt.42(24), 4855–4859 (2003). [CrossRef] [PubMed]
  21. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-microm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  22. Y. Y. Liu and A. W. Poon, “Flow-assisted single-beam optothermal manipulation of microparticles,” Opt. Express18(17), 18483–18491 (2010). [CrossRef] [PubMed]
  23. H. Chen and D. T. K. Tong, “Two-dimensional symmetric multimode interferences in silicon square waveguides,” IEEE Photon. Technol. Lett.17(4), 801–803 (2005). [CrossRef]
  24. L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995). [CrossRef]
  25. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005). [CrossRef] [PubMed]
  26. N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun.214(1–6), 15–24 (2002). [CrossRef]
  27. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996). [CrossRef] [PubMed]
  28. D. D. Jia, J. Hamilton, L. M. Zaman, and A. Goonewardene, “The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres,” Am. J. Phys.75(2), 111–115 (2007). [CrossRef]
  29. J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano5(7), 5457–5462 (2011). [CrossRef] [PubMed]
  30. S. Rancourt-Grenier, M. T. Wei, J. J. Bai, A. Chiou, P. P. Bareil, P. L. Duval, and Y. L. Sheng, “Dynamic deformation of red blood cell in dual-trap optical tweezers,” Opt. Express18(10), 10462–10472 (2010). [CrossRef] [PubMed]
  31. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  32. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express13(18), 6956–6963 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (280 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited