OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1567–1573

Adaptive optical probe design for optical coherence tomography and microscopy using tunable optics

Minseog Choi, Seungwan Lee, Jong-hyeon Chang, Eunsung Lee, Kyu-Dong Jung, and Woonbae Kim  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1567-1573 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a tunable, adaptive optical imaging probe for multimodal imaging such as optical coherence tomography and microscopy. The probe is compatible with forward-looking scanning laser imaging devices such as an endoscope. The lens configuration includes a tunable iris and two varifocal lenses, both driven by microelectrofluidics, as well as several conventional fixed focus lenses. The modulation transfer function and spot size in the focal plane is evaluated, and we show using optical simulations that there are three possible imaging modes with different transverse resolutions and focal depths.

© 2013 OSA

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 16, 2012
Revised Manuscript: December 17, 2012
Manuscript Accepted: January 2, 2013
Published: January 15, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Minseog Choi, Seungwan Lee, Jong-hyeon Chang, Eunsung Lee, Kyu-Dong Jung, and Woonbae Kim, "Adaptive optical probe design for optical coherence tomography and microscopy using tunable optics," Opt. Express 21, 1567-1573 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999). [CrossRef]
  2. J. G. Fujimoto, “Optical coherence tomography,” C. R. Acad. Sci. Paris Ser. IV2, 1099–1111 (2001).
  3. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005). [CrossRef]
  4. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt.11(6), 063001 (2006). [CrossRef] [PubMed]
  5. J. A. Evans and N. S. Nishioka, “Endoscopic confocal microscopy,” Curr. Opin. Gastroenterol.21(5), 578–584 (2005). [CrossRef] [PubMed]
  6. C. Liang, K. B. Sung, R. R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt.41(22), 4603–4610 (2002). [CrossRef] [PubMed]
  7. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express15(5), 2409–2420 (2007). [CrossRef] [PubMed]
  8. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004). [CrossRef]
  9. A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005). [CrossRef]
  10. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt.10(4), 044012 (2008). [CrossRef]
  11. J. P. Rolland, S. Murali, P. Meemon, P. Glenn, K. P. Thompson, and K.-S. Lee, “Performance of a Liquid lens enabled optical coherence microscope with Gabor fusion,” in International Optical Design Conference, Technical Digest (CD) (Optical Society of America, 2010), paper IWD4.
  12. J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE8252, 82520O, 82520O–6 (2012). [CrossRef]
  13. J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Varifocal liquid lens based on microelectrofluidic technology,” Opt. Lett.37(21), 4377–4379 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited