OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1581–1592

Intracavity widely-tunable quantum cascade laser spectrometer

Richard A. Brownsword and Damien Weidmann  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1581-1592 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A grating-tuned extended-cavity quantum cascade laser (EC-QCL) operating around 7.6 µm was assembled to provide a tuning range of ~80 cm−1 with output power of up to 30 mW. The EC-QCL output power was shown to be sensitive to the presence of a broadband absorbing gas mixture contained in a 2-cm cell introduced inside the extended laser cavity. In this arrangement, enhanced absorption relative to single path linear absorption was observed. To describe observations, in the QCL rate-equation model was included the effect of intracavity absorption. The model qualitatively reproduced the absorption behavior observed. In addition, it allowed quantitative measurements of mixing ratio of dimethyl carbonate, which was used as a test broadband absorber. A number of alternative data acquisition and reduction methods were identified. As the intracavity absorber modifies the laser threshold current, phase-sensitive detection of the laser threshold current was found to be the most attractive way to determine the mixing ratio of the absorber. The dimethyl carbonate detection limit was estimated to be 1.4 ppmv for 10 second integration. Limitations and possible ways of improvements were also identified.

© 2013 OSA

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(300.6360) Spectroscopy : Spectroscopy, laser
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:

Original Manuscript: October 16, 2012
Revised Manuscript: December 27, 2012
Manuscript Accepted: January 6, 2013
Published: January 15, 2013

Richard A. Brownsword and Damien Weidmann, "Intracavity widely-tunable quantum cascade laser spectrometer," Opt. Express 21, 1581-1592 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002). [CrossRef]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010). [CrossRef]
  3. R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004). [CrossRef]
  4. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005). [CrossRef]
  5. T. Tsai and G. Wysocki, “External-cavity quantum cascade lasers with fast wavelength scanning,” Appl. Phys. B100(2), 243–251 (2010). [CrossRef]
  6. B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers – a review,” Opto-Electron. Rev.16(4), 347–366 (2008). [CrossRef]
  7. M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE7608, 76080D, 76080D-11 (2010). [CrossRef]
  8. S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” J. Appl. Phys.104(9), 093115 (2008). [CrossRef]
  9. D. J. Hamilton and A. J. Orr-Ewing, “A quantum cascade laser based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air,” Appl. Phys. B102(4), 879–890 (2011). [CrossRef]
  10. M. C. Phillips and M. S. Taubman, “Intracavity sensing via compliance voltage in an external cavity quantum cascade laser,” Opt. Lett.37(13), 2664–2666 (2012). [CrossRef] [PubMed]
  11. G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011). [CrossRef]
  12. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B69(3), 171–202 (1999). [CrossRef]
  13. P. Gurlit, J. P. Burrows, H. Burkhard, R. Böhm, V. M. Baev, and P. E. Toschek, “Intracavity diode laser for atmospheric field measurements,” Infrared Phys. Technol.37(1), 95–98 (1996). [CrossRef]
  14. H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with a single-mode laser,” IEEE J. Quantum Electron.16(4), 455–461 (1980). [CrossRef]
  15. R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010). [CrossRef]
  16. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc.58(12), 1452–1461 (2004). [CrossRef] [PubMed]
  17. H. Bohets and B. J. van der Veken, “On the conformational behavior of dimethyl carbonate,” Phys. Chem. Chem. Phys.1(8), 1817–1826 (1999). [CrossRef]
  18. T. Gensty and W. Elsäßer, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun.256(1-3), 171–183 (2005). [CrossRef]
  19. Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited