OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1615–1622

Generation of linear and nonlinear propagation of three-Airy beams

Yi Liang, Zhuoyi Ye, Daohong Song, Cibo Lou, Xinzheng Zhang, Jingjun Xu, and Zhigang Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1615-1622 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1815 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first experimental demonstration of the so-called three-Airy beams. Such beams represent a two-dimensional field that is a product (rather than simple superposition) of three Airy beams. Our experiments show that, in contrast to conventional Airy beams, this new family of Airy beams can be realized even without the use of truncation by finite apertures. Furthermore, we study linear and nonlinear propagation of the three-Airy beams in a photorefractive medium. It is found that a three-Airy beam tends to linearly diffract into a super-Gaussian-like beam, while under nonlinear propagation it either turns into three intensity spots with a self-defocusing nonlinearity or evolves into a self-trapped channel with a self-focusing nonlinearity.

© 2013 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

Original Manuscript: November 5, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 26, 2012
Published: January 15, 2013

Yi Liang, Zhuoyi Ye, Daohong Song, Cibo Lou, Xinzheng Zhang, Jingjun Xu, and Zhigang Chen, "Generation of linear and nonlinear propagation of three-Airy beams," Opt. Express 21, 1615-1622 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G.A. Siviloglou and D.N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett.32, 979–981 (2007). [CrossRef] [PubMed]
  2. G.A. Siviloglou, J. Broky, A. Dogariu, and D.N. Christodoulides, “Observation of accelerating Airy Beams,” Phys. Rev. Lett.99, 213901 (2007). [CrossRef]
  3. Y. Hu, G.A. Siviloglou, P Zhang, N.K. Efremidis, D.N. Christodoulides, and Z. Chen, “Self-accelerating Airy Beams: Generation, control, and applications,” in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen and R. Morandotti, eds, (Springer, New York, 2012),1–46. [CrossRef]
  4. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2, 675–678 (2008). [CrossRef]
  5. P. Polynkin, M. Kolesik, J.V. Moloney, G.A. Siviloglou, and D.N. Christodoulides, “Curved plasma channel generation using ultraintense Airy Beams,” Science324, 229–232 (2009). [CrossRef] [PubMed]
  6. A. Chong, W. Renninger, D.N. Christodoulides, and F.W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics4, 103–106 (2010). [CrossRef]
  7. T. Ellenbogen, N. Voloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3, 395–398 (2009). [CrossRef]
  8. S. Jia, J. Lee, G. A. Siviloglou, D. N. Christodoulides, and J. W. Fleischer, “Diffusion-trapped Airy Beams in photorefractive Media,” Phys. Rev. Lett.104, 253904 (2010). [CrossRef] [PubMed]
  9. I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-accelerating self-trapped optical beams,” Phys. Rev. Lett.106, 213903 (2011). [CrossRef] [PubMed]
  10. Y. Hu, S. Huang, P. Zhang, C. Lou, J. Xu, and Z. Chen, “Persistence and breakdown of Airy beams driven by an initial nonlinearity,” Opt. Lett.35, 3952–3954 (2010). [CrossRef] [PubMed]
  11. Z. Ye, S. Liu, C. Lou, P. Zhang, Y. Hu, D. Song, J. Zhao, and Z. Chen, “Acceleration control of Airy beams with optically induced refractive-index gradient,” Opt. Lett.36, 3230–3232 (2011). [CrossRef] [PubMed]
  12. Y. Hu, Z. Sun, D. Bongiovanni, D. Song, C. Lou, J. Xu, Z. Chen, and R. Morandotti, “Reshaping the trajectory and spectrum of nonlinear Airy beams,” Opt. Lett.37, 3201–3203 (2012). [CrossRef] [PubMed]
  13. I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams in quadratic nonlinear media,” Phys. Rev. Lett.108, 113903 (2012). [CrossRef] [PubMed]
  14. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett.35, 4045–4047 (2010). [CrossRef] [PubMed]
  15. I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett.36, 1890–1892 (2011). [CrossRef] [PubMed]
  16. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett.36, 1842–1844 (2011). [CrossRef] [PubMed]
  17. P. Zhang, J. Prakash, Z. Zhang, M. Mills, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett.36, 2883–2885 (2011). [CrossRef] [PubMed]
  18. I. Chremmos, Z. Chen, N. K. Efremidis, and D. N. Christodoulides, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A85, 023828 (2012). [CrossRef]
  19. E. Abramochkin and E. Razueva, “Product of three Airy beams,” Opt. Lett.36, 3732–3734 (2011). [CrossRef] [PubMed]
  20. H. I. Sztul and R. R. Alfano, “The Poynting vector and angular momentum of Airy beams,” Opt. Express16, 9411–9416 (2008). [CrossRef] [PubMed]
  21. J. Broky, G. A. Siviloglou, A. Dogariu, and D.N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express16, 12880–12891 (2008). [CrossRef] [PubMed]
  22. Z. Zhang, J. Liu, P. Zhang, P. Ni, J. Prakash, Y. Hu, D. Jiang, D. N. Christodoulides, and Z. Chen, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” to be published in Chinese Opt. Lett. (2013).
  23. H. Barwick, “Accelerating regular polygon beams,” Opt. Lett.35, 4118–4120 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited