OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1741–1750

Tuning of zero group velocity dispersion in infiltrated vertical silicon slot waveguides

Peter W. Nolte, Christian Bohley, and Jörg Schilling  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1741-1750 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work the design of Si / hybrid waveguides which contain a vertical infiltrated slot is studied. The case of slots infiltrated with a χ(3) nonlinear material of relatively high refractive index (e.g. chalcogenide glasses) is specifically discussed. An optimized waveguide geometry with periodic refractive index modulation, a nonlinear figure of merit > 1 and minimum effective mode cross section is presented. Introducing a periodic refractive index variation along the waveguide allows the adjustment of the group velocity dispersion (GVD). Choosing the period accordingly, the phase matching condition for degenerate four wave mixing (GVD = 0) can be fulfilled at virtually any desired frequency and independently from the fixed optimized waveguide cross section.

© 2013 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

Original Manuscript: October 12, 2012
Revised Manuscript: November 22, 2012
Manuscript Accepted: November 24, 2012
Published: January 16, 2013

Peter W. Nolte, Christian Bohley, and Jörg Schilling, "Tuning of zero group velocity dispersion in infiltrated vertical silicon slot waveguides," Opt. Express 21, 1741-1750 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express15, 9458–9463 (2007). [CrossRef] [PubMed]
  2. T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron.10, 1149 – 1153 (2004). [CrossRef]
  3. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008).
  4. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett.14, 1140–1142 (1989). [CrossRef] [PubMed]
  5. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15, 5976–5990 (2007). [CrossRef] [PubMed]
  6. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys.77, 5518–5523 (1995). [CrossRef]
  7. L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express18, 13187–13193 (2010). [CrossRef] [PubMed]
  8. Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt.50, 1260–1265 (2011). [CrossRef] [PubMed]
  9. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express18, 20529–20534 (2010). [CrossRef] [PubMed]
  10. S. Mas, J. Caraquitena, J. V. Galn, P. Sanchis, and J. Mart, “Tailoring the dispersion behavior of silicon nanophotonic slot waveguides,” Opt. Express18, 20839–20844 (2010). [CrossRef] [PubMed]
  11. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express17, 9282–9287 (2009). [CrossRef] [PubMed]
  12. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006).
  13. C. Tsay, E. Mujagi, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18, 15523–15530 (2010). [CrossRef] [PubMed]
  14. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18, 26744–26753 (2010). [CrossRef] [PubMed]
  15. G. C. Chern, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys.53, 6979 (1982). [CrossRef]
  16. Y. Yue, L. Zhang, J. Wang, R. G. Beausoleil, and A. E. Willner, “Highly efficient nonlinearity reduction in silicon-on-insulator waveguides using vertical slots,” Opt. Express18, 22061 (2010). [CrossRef] [PubMed]
  17. P. Muellner, “Fundamental characteristics of the soi slot waveguide structure,” Ph.D. thesis, Faculty of Physics, University of Vienna (2010).
  18. “ www.comsol.com ”.
  19. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity,” Opt. Express17, 2298–2318 (2009). [CrossRef] [PubMed]
  20. J. I. Dadap, N. C. Panoiu, X. Chen, I.-W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. Osgood, “Nonlinear-optical phase modification in dispersion-engineered si photonic wires,” Opt. Express16, 1280–1299 (2008). [CrossRef] [PubMed]
  21. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604–16644 (2007). [CrossRef] [PubMed]
  22. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Effective mode area and its optimization in silicon-nanocrystal waveguides,” Opt. Lett.37, 2295–2297 (2012). [CrossRef]
  23. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14, 4357–4362 (2006). [CrossRef] [PubMed]
  24. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express20, 1685–1690 (2012). [CrossRef] [PubMed]
  25. L. Zhang, Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express17, 7095–7101 (2009). [CrossRef] [PubMed]
  26. J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, and R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express20, 9227–9242 (2012). [CrossRef] [PubMed]
  27. R. Todorov, D. Tsankov, J. Pirov, and K. Petkov, “Structure and optical properties of thin As2S3 In2S3 films,” J. Phys. D: Appl. Phys.44, 305401 (2011). [CrossRef]
  28. A. von Rhein, S. Greulich-Weber, and R. B. Wehrspohn, “Multiphysics software gazes into photonic crystals,” Physics Best pp. 38–39 (2007).
  29. J. D. Joannopoulos and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  30. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lonar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106–121106–3 (2009). [CrossRef]
  31. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16, 6227–6232 (2008). [CrossRef] [PubMed]
  32. M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, E. V. Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Prof Med/Tech, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited