OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1804–1811

Universal scaling of plasmonic refractive index sensors

Yen-Kai Chang, Zong-Xing Lou, Kao-Der Chang, and Chih-Wei Chang  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1804-1811 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1606 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We establish experimental and numerical evidence that the refractive index sensitivities of various subwavelength plasmonic sensors obey a simple universal scaling relation that the sensitivities linearly increase with λm/neff (where λm is the resonant wavelengths and neff is the effective refractive index of the environment) and exhibit a slope equal to 1 instead of 2 predicted theoretically. The universal scaling relation is independent of the geometrical structures or contributions of multipolar resonances of individual metal structures (i.e. plasmonic atoms). It is also independent of spatial distributions or field-enhancements of electromagnetic hot spots in coupled metal structures (i.e. plasmonic molecules). The universal scaling relation reveals the fundamental standing wave resonances for all plasmonic atoms and the predominant near-field electric couplings for most plasmonic molecules. The established universal relation also helps to exclude some magnetically coupled plasmonic molecules for practical applications due to their reduced sensitivities.

© 2013 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: November 13, 2012
Revised Manuscript: January 8, 2013
Manuscript Accepted: January 9, 2013
Published: January 16, 2013

Yen-Kai Chang, Zong-Xing Lou, Kao-Der Chang, and Chih-Wei Chang, "Universal scaling of plasmonic refractive index sensors," Opt. Express 21, 1804-1811 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev.111(6), 3828–3857 (2011). [CrossRef] [PubMed]
  2. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing--A review,” Anal. Chim. Acta706(1), 8–24 (2011). [CrossRef] [PubMed]
  3. C. L. Nehl, H. W. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett.6(4), 683–688 (2006). [CrossRef] [PubMed]
  4. Y. G. Sun and Y. N. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem.74(20), 5297–5305 (2002). [CrossRef] [PubMed]
  5. H. J. Chen, X. S. Kou, Z. Yang, W. H. Ni, and J. F. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir24(10), 5233–5237 (2008). [CrossRef] [PubMed]
  6. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5(10), 2034–2038 (2005). [CrossRef] [PubMed]
  7. L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006). [CrossRef] [PubMed]
  8. C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011). [CrossRef] [PubMed]
  9. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005). [CrossRef] [PubMed]
  10. Y. C. Chao, H. C. Tseng, K. D. Chang, and C. W. Chang, “Three types of couplings between asymmetric plasmonic dimers,” Opt. Express20(3), 2887–2894 (2012). [CrossRef] [PubMed]
  11. H. C. Tseng and C. W. Chang, “High displacement sensitivity in asymmetric plasmonic nanostructures,” Opt. Express18(17), 18360–18367 (2010). [CrossRef] [PubMed]
  12. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  13. E. C. Le Ru and P. G. Etchegoin, “Phenomenological local field enhancement factor distributions around electromagnetic hot spots,” J. Chem. Phys.130(18), 181101 (2009). [CrossRef] [PubMed]
  14. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability,” Nano Lett.10(10), 4222–4227 (2010). [CrossRef] [PubMed]
  15. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing,” ACS Nano5(10), 8167–8174 (2011). [CrossRef] [PubMed]
  16. N. Verellen, P. Van Dorpe, C. J. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011). [CrossRef] [PubMed]
  17. C. Y. Chen, S. C. Wu, and T. J. Yen, “Experimental verification of standing-wave plasmonic resonances in split-ring resonators,” Appl. Phys. Lett.93(3), 034110 (2008). [CrossRef]
  18. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006). [CrossRef]
  19. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B84(1–2), 219–227 (2006). [CrossRef]
  20. M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Opt. Express19(10), 9213–9220 (2011). [CrossRef] [PubMed]
  21. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited