OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2012–2017

Third-harmonic UV generation in silicon nitride nanostructures

Tingyin Ning, Outi Hyvärinen, Henna Pietarinen, Tommi Kaplas, Martti Kauranen, and Göery Genty  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 2012-2017 (2013)
http://dx.doi.org/10.1364/OE.21.002012


View Full Text Article

Enhanced HTML    Acrobat PDF (2162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on strong UV third-harmonic generation from silicon nitride films and resonant waveguide gratings. We determine the absolute value of third-order susceptibility of silicon nitride at wavelength of 1064 nm to be χ(3) (-3ω,ω,ω,ω) = (2.8 ± 0.6) × 10−20 m2/V2, which is two orders of magnitude larger than that of fused silica. The third-harmonic generation is further enhanced by a factor of 2000 by fabricating a resonant waveguide grating onto a silicon nitride film. Our results extend the operating range of CMOS-compatible nonlinear materials to the UV spectral regime.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(190.2620) Nonlinear optics : Harmonic generation and mixing
(050.5745) Diffraction and gratings : Resonance domain
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 29, 2012
Revised Manuscript: January 9, 2013
Manuscript Accepted: January 10, 2013
Published: January 17, 2013

Citation
Tingyin Ning, Outi Hyvärinen, Henna Pietarinen, Tommi Kaplas, Martti Kauranen, and Göery Genty, "Third-harmonic UV generation in silicon nitride nanostructures," Opt. Express 21, 2012-2017 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-2012


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 2003).
  2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  3. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006). [CrossRef] [PubMed]
  4. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011). [CrossRef] [PubMed]
  5. S. V. Andersen and K. Pedersen, “Second-harmonic generation from electron beam deposited SiO films,” Opt. Express20(13), 13857–13869 (2012). [CrossRef] [PubMed]
  6. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  7. D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96(6), 061101 (2010). [CrossRef]
  8. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express19(12), 11415–11421 (2011). [CrossRef] [PubMed]
  9. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012). [CrossRef] [PubMed]
  10. P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons, 2003).
  11. F. Stehlin, Y. Bourgin, A. Spangenberg, Y. Jourlin, O. Parriaux, S. Reynaud, F. Wieder, and O. Soppera, “Direct nanopatterning of 100 nm metal oxide periodic structures by Deep-UV immersion lithography,” Opt. Lett.37(22), 4651–4653 (2012). [PubMed]
  12. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys.77(12), 6534–6541 (1995). [CrossRef]
  13. B. Kim, S. Han, T. Kim, B. Kim, and I. Shim, “Modeling refraction characteristics of silicon nitride film deposited in a SiH4-NH3-N2 plasma using neural network,” IEEE Trans. Plasma Sci.31(3), 317–323 (2003). [CrossRef]
  14. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16(17), 12987–12994 (2008). [CrossRef] [PubMed]
  15. S. Minissale, S. Yerci, and L. Nero, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett.100(2), 021109 (2012). [CrossRef]
  16. T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett.100(16), 161902 (2012). [CrossRef]
  17. T. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett.37(20), 4269–4271 (2012). [CrossRef] [PubMed]
  18. P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10(12), 4880–4883 (2010). [CrossRef] [PubMed]
  19. N. Talebi, M. Shahabadi, W. Khunsin, and R. Vogelgesang, “Plasmonic grating as a nonlinear converter-coupler,” Opt. Express20(2), 1392–1405 (2012). [CrossRef] [PubMed]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  21. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A13(9), 1870–1876 (1996). [CrossRef]
  22. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. A4(4), 481–489 (1987). [CrossRef]
  23. J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B Condens. Matter51(3), 1425–1434 (1995). [CrossRef] [PubMed]
  24. U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: Absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B61(16), 10702–10710 (2000). [CrossRef]
  25. J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat Commun2, 254 (2011). [CrossRef] [PubMed]
  26. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett.28(24), 2500–2502 (2003). [CrossRef] [PubMed]
  27. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007). [CrossRef]
  28. A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express18(12), 12298–12303 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited