OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2018–2023

Ultra-highly sensitive optical gas sensors based on chemomechanical polymer-incorporated fiber interferometer

Mi-Kyung Bae, Jung Ah Lim, Sangsig Kim, and Yong-Won Song  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2018-2023 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel optical sensor for use in explosive gas detection, having a simple structure, ultrahigh sensitivity, room-temperature sensing/refreshing operation, and no local power requirements. The sensor relies on a fiber Fabry-Pérot interferometer prepared using poly(4-vinylpyridine), which induces cavity expansion upon absorption of nitrobenzene, thereby shifting the phase matching conditions of the resonating modes. An estimated sensitivity limit as low as 5 ppb was achieved.

© 2013 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.5470) Materials : Polymers

ToC Category:

Original Manuscript: December 3, 2012
Revised Manuscript: January 10, 2013
Manuscript Accepted: January 10, 2013
Published: January 17, 2013

Mi-Kyung Bae, Jung Ah Lim, Sangsig Kim, and Yong-Won Song, "Ultra-highly sensitive optical gas sensors based on chemomechanical polymer-incorporated fiber interferometer," Opt. Express 21, 2018-2023 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for the detection of toxic gases,” Nat. Chem.1(7), 562–567 (2009). [CrossRef] [PubMed]
  2. P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010). [CrossRef] [PubMed]
  3. E. Comini, “Metal oxide nano-crystals for gas sensing,” Anal. Chim. Acta568(1-2), 28–40 (2006). [CrossRef] [PubMed]
  4. Y. C. Lee, H. Huang, O. K. Tan, and M. S. Tse, “Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films,” Sens. Actuators B Chem.132(1), 239–242 (2008). [CrossRef]
  5. P. Lin and F. Yan, “Organic thin-film transistors for chemical and biological sensing,” Adv. Mater. (Deerfield Beach Fla.)24(1), 34–51 (2012). [CrossRef] [PubMed]
  6. G. Lim, U. P. DeSilva, N. R. Quick, and A. Kar, “Laser optical gas sensor by photoexcitation effect on refractive index,” Appl. Opt.49(9), 1563–1573 (2010). [CrossRef] [PubMed]
  7. S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel)11(12), 1565–1588 (2011). [CrossRef] [PubMed]
  8. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008). [CrossRef]
  9. M. Niklès and F. Ravet, “Distributed fibre sensors; depth and sensitivity,” Nat. Photonics4(7), 431–432 (2010). [CrossRef]
  10. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express17(4), 2731–2738 (2009). [CrossRef] [PubMed]
  11. Z. Gu, Y. Xu, and K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Opt. Lett.31(16), 2405–2407 (2006). [CrossRef] [PubMed]
  12. J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem.110(1), 23–27 (2005). [CrossRef]
  13. W. E. Tenhaeff, L. D. McIntosh, and K. K. Gleason, “Synthesis of poly(4-vinylpyridine) thin films by initiated chemical vapor deposition (iCVD) for selective nanotrench-based sensing of nitroaromatics,” Adv. Funct. Mater.20(7), 1144–1151 (2010). [CrossRef]
  14. X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric-field-assisted dip-pen nanolithography on poly(4-vinylpyridine) (P4VP) thin films,” ACS Appl. Mater. Interfaces2(10), 2904–2909 (2010). [CrossRef]
  15. K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000). [CrossRef] [PubMed]
  16. Y. Cong, Z. Zhang, J. Fu, J. Li, and Y. Han, “Water-induced morphology evolution of block copolymer micellar thin films,” Polymer (Guildf.)46(14), 5377–5384 (2005). [CrossRef]
  17. S. Park, J. Y. Wang, B. Kim, W. Chen, and T. P. Russell, “Solvent-induced transition from micelles in solution to cylindrical microdomains in diblock copolymer thin films,” Macromolecules40(25), 9059–9063 (2007). [CrossRef]
  18. M. Goodarzi, P. R. Duchowicz, M. P. Freitas, and F. M. Fernandez, “Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches,” Fluid Phase Equilib.293(2), 130–136 (2010). [CrossRef]
  19. P. Bustamante, M. A. Pena, and J. Barra, “The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na,” Int. J. Pharm.194(1), 117–124 (2000). [CrossRef] [PubMed]
  20. N. Schuld and B. A. Wolf, “Polymer‐solvent interaction parameters” in Polymer Handbook, 4th ed., J. Brandrup, E. H. Immergut, and E. A. Grulke, eds. (Wiley, New York, 2003) p. 247.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited