OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2032–2049

Phase optimisation for structured illumination microscopy

Kai Wicker, Ondrej Mandula, Gerrit Best, Reto Fiolka, and Rainer Heintzmann  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 2032-2049 (2013)
http://dx.doi.org/10.1364/OE.21.002032


View Full Text Article

Enhanced HTML    Acrobat PDF (3245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Structured illumination microscopy can achieve super-resolution in fluorescence imaging. The sample is illuminated with periodic light patterns, and a series of images are acquired for different pattern positions, also called phases. From these a super-resolution image can be computed. However, for an artefact-free reconstruction it is important that the pattern phases be known with very high precision. If the necessary precision cannot be guaranteed experimentally, the phase information has to be retrieved a posteriori from the acquired data. We present a fast and robust algorithm that iteratively determines these phases with a precision of typically below λ/100. Our method, which is based on cross-correlations, allows optimisation of pattern phase even when the pattern itself is too fine for detection, in which case most other methods inevitably fail. We analyse the performance of this method using simulated data from a synthetic 2D sample as well as experimental single-slice data from a 3D sample and compare it with another previously published approach.

© 2013 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: September 28, 2012
Revised Manuscript: January 6, 2013
Manuscript Accepted: January 7, 2013
Published: January 18, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Kai Wicker, Ondrej Mandula, Gerrit Best, Reto Fiolka, and Rainer Heintzmann, "Phase optimisation for structured illumination microscopy," Opt. Express 21, 2032-2049 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-2032


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat.9, 413–468 (1873). [CrossRef]
  2. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24, 954–956 (1999). [CrossRef]
  3. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” PNAS102, 17565–17569 (2005). [CrossRef] [PubMed]
  4. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006). [CrossRef] [PubMed]
  5. E. Betzig, G. H. Patterson, R. Sougrat, W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006). [CrossRef] [PubMed]
  6. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–796 (2006). [CrossRef] [PubMed]
  7. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999). [CrossRef]
  8. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198, 82–87 (2000). [CrossRef] [PubMed]
  9. J. T. Frohn, “Super-resolution fluorescence microscopy by structured light illumination,” Ph.D. thesis, Eidgenössische Technische Hochschule Zürich, Switzerland (2000).
  10. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy - a concept for optical resolution improvement,” JOSA A19, 1599–1609” (2002). [CrossRef] [PubMed]
  11. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” PNAS102, 13081–13086 (2005). [CrossRef] [PubMed]
  12. L. Hirvonen, O. Mandula, K. Wicker, and R. Heintzmann, “Structured illumination microscopy using photo-switchable fluorescent proteins,” Proc. SPIE6861, 68610L (2008). [CrossRef]
  13. E. H. Rego, L. Shao, J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution” PNAS109, E135–E143 (2012). [CrossRef]
  14. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase-shift estimation in sinusoidally illuminated images for lateral superresolution,” JOSA A26, 413–424 (2009). [CrossRef] [PubMed]
  15. R. Fiolka, M. Beck, and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett.33, 1629–1631 (2008). [CrossRef] [PubMed]
  16. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6, 339–342 (2009). [CrossRef] [PubMed]
  17. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nature Photon.6, 312–315 (2012). [CrossRef]
  18. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94, 4957–4970 (2008). [CrossRef] [PubMed]
  19. R. Penrose, “A generalized inverse for matrices,” Proc. Cambridge Philos. Soc.51, 406–413 (1955). [CrossRef]
  20. L. P. Yaroslavsky and H. J. Caulfield, “Deconvolution of multiple images of the same object,” Appl. Opt.33, 2157–2162 (1994). [CrossRef] [PubMed]
  21. M. Schmidt, “minfunc.m,” http://www.di.ens.fr/~mschmidt/Software/minFunc.html (2012).
  22. G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron42, 330–335 (2011). [CrossRef]
  23. K. Wicker, “Increasing resolution and light efficiency in fluorescence microscopy,” Ph.D. thesis, King’s College London, U.K. (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited