OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2110–2117

Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing

Xiaohui Lin, Tao Ling, Harish Subbaraman, L. Jay Guo, and Ray T. Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2110-2117 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2732 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a printable Thermo-Optic (TO) switch utilizing imprinting and ink-jet printing techniques. The material system, optical and thermal designs are discussed. Imprinting technique is used to transfer a 2 × 2 switch pattern from a flexible mold into a UV15LV polymer bottom cladding. Ink-jet printing is further used to deposit a SU-8 polymer core layer on top. Operation of the switch is experimentally demonstrated up to a frequency of 1 kHz, with switching time less than 0.5ms. The printing technique demonstrates great potential for high throughput, roll-to-roll fabrication of low cost photonic devices.

© 2013 OSA

OCIS Codes
(130.4815) Integrated optics : Optical switching devices
(250.6715) Optoelectronics : Switching

ToC Category:
Integrated Optics

Original Manuscript: November 8, 2012
Manuscript Accepted: December 26, 2012
Published: January 18, 2013

Xiaohui Lin, Tao Ling, Harish Subbaraman, L. Jay Guo, and Ray T. Chen, "Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing," Opt. Express 21, 2110-2117 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Wong, K. K. Liu, K. S. Chan, and E. Y. B. Pun, “Polymer devices for photonic applications,” J. Cryst. Growth288(1), 100–104 (2006). [CrossRef]
  2. M. B. Christiansen, M. Schøler, and A. Kristensen, “Integration of active and passive polymer optics,” Opt. Express15(7), 3931–3939 (2007). [CrossRef] [PubMed]
  3. X. H. Lin, X. Y. Dou, A. X. Wang, and R. T. Chen, “Polymer optical waveguide based bi-directional optical bus architecture for high speed optical backplane,” Proc. SPIE8267, 826709 (2012). [CrossRef]
  4. H. Yu, X. Q. Jiang, J. Y. Yang, X. H. Li, M. H. Wang, and Y. B. Li, “The design of 2x2 polymer TIR switch based on thermal field analysis employing thermo-optic effect,” Passive Components and Fiber-Based Devices5623, 174–183 (2005). [CrossRef]
  5. X. L. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4 x 4 nonblocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J Sel Top Quant12(5), 997–1000 (2006). [CrossRef]
  6. B. S. Lee, C. Y. Lin, A. X. Wang, and R. T. Chen, “Demonstration of a linearized traveling wave Y-fed directional coupler modulator based on electro-optic polymer,” J. Lightwave Technol.29(13), 1931–1936 (2011). [CrossRef]
  7. D. H. Park, Y. Z. Leng, J. D. Luo, A. K. Y. Jen, and W. N. Herman, “High speed electro-optic polymer phase modulator using an in-plane slotline RF waveguide,” Rf and Millimeter-Wave Photonics7936 (2011).
  8. W. H. Steier, A. Szep, Y. H. Kuo, P. Rabiei, S. W. Ahn, M. C. Oh, H. Zhang, C. Zhang, H. Erlig, B. Tsap, H. R. Fetterman, D. H. Chang, and L. R. Dalton, “High speed polymer electro-optic modulators,” Leos 2001: 14th Annual Meeting of the IEEE Lasers & Electro-Optics Society, Vols 1 and 2, Proceedings, 188–189 (2001).
  9. J. Y. Yang, Q. J. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett.81(16), 2947–2949 (2002). [CrossRef]
  10. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. (Deerfield Beach Fla.)19(4), 495–513 (2007). [CrossRef]
  11. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv Mater20, 2044–2049 (2008).
  12. J. H. Min, H. Kim, B. Kim, and S. Kang, “Design of microlens array on aperture stop array to generate multi optical probes with spatial light modulation,” Jpn. J. Appl. Phys.47(8), 6800–6803 (2008). [CrossRef]
  13. K. L. Lai, S. F. Hsiao, M. H. Hon, and I. C. Leu, “Patterning of polystyrene thin films by solvent-assisted imprint lithography and controlled dewetting,” Microelectron. Eng.94, 33–37 (2012). [CrossRef]
  14. Y. L. Gao, J. Lin, P. Jin, J. B. Tan, G. Davies, and P. D. Prewett, “Stop grating for perfect replication of micro Fresnel lens by thermal imprinting,” J. Micromech. Microeng.22(6), 065018 (2012). [CrossRef]
  15. S. W. Ahn, K. D. Lee, D. H. Kim, and S. S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photonic Tech L17(10), 2122–2124 (2005). [CrossRef]
  16. Y. J. Weng, Y. C. Weng, Y. C. Wong, S. Y. Yang, and H. K. Liu, “Fabrication of optical waveguide devices using electromagnetic assisted nanoimprinting,” Proceedings of the 2009 International Conference on Signal Processing Systems, 910–912 (2009).
  17. X. L. Wang, X. Y. Dou, X. H. Lin, and R. T. Chen, “Flexible polymer optical layer for board-level optical interconnects by highly durable metal imprinting method,” Proc. SPIE7607, 76070R, 76070R-7 (2010). [CrossRef]
  18. M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllyla, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng.88(2), 175–178 (2011). [CrossRef]
  19. X. Lin, X. Dou, X. Wang, and R. T. Chen, “Nickel electroplating for nanostructure mold fabrication,” J. Nanosci. Nanotechnol.11(8), 7006–7010 (2011). [CrossRef] [PubMed]
  20. X. Y. Dou, X. L. Wang, H. Y. Huang, X. H. Lin, and R. T. Chen, “Fabrication of metallic hard mold for polymeric waveguides with embedded micro-mirrors,” 2010 IEEE Photonics Society Winter Topicals Meeting Series, 101–102 (2010).
  21. T. Ling, S. L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express19(2), 861–869 (2011). [CrossRef] [PubMed]
  22. D. Pisignano, L. Persano, E. Mele, P. Visconti, M. Anni, G. Gigli, R. Cingolani, L. Favaretto, and G. Barbarella, “First-order imprinted organic distributed feedback lasers,” Synth. Met.153(1-3), 237–240 (2005). [CrossRef]
  23. P. C. Kao, S. Y. Chu, T. Y. Chen, C. Y. Zhan, F. C. Hong, C. Y. Chang, L. C. Hsu, W. C. Liao, and M. H. Hon, “Fabrication of large-scaled organic light emitting devices on the flexible substrates using low-pressure imprinting lithography,” IEEE Trans. Electron. Dev.52(8), 1722–1726 (2005). [CrossRef]
  24. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express14(6), 2323–2334 (2006). [CrossRef] [PubMed]
  25. B. Ciftcioglu, R. Berman, S. Wang, J. Y. Hu, I. Savidis, M. Jain, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “3-D integrated heterogeneous intra-chip free-space optical interconnect,” Opt. Express20(4), 4331–4345 (2012). [CrossRef] [PubMed]
  26. C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for lcd backlighting applications,” J Disp Technol5(5), 147–151 (2009). [CrossRef]
  27. S. R. Mohapatra, T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono, “Flexible resistive switching memory using inkjet printing of a solid polymer electrolyte,” AIP Adv. 2(2012).
  28. Y.-T. Han, J.-U. Shin, S.-H. Park, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “N × N polymer matrix switches using thermo-optic total-internal-reflection switch,” Opt. Express20(12), 13284–13295 (2012). [CrossRef] [PubMed]
  29. Y. O. Noh, H. J. Lee, Y. H. Won, and M. C. Oh, “Polymer waveguide thermo-optic switches with - 70 dB optical crosstalk,” Opt. Commun.258(1), 18–22 (2006). [CrossRef]
  30. X. L. Wang, B. Howley, M. Y. Chen, Q. J. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Integrated Optics: Devices, Materials, and Technologies IX5728, 60–67 (2005). [CrossRef]
  31. M. G. Kang and L. J. Guo, “Metal transfer assisted nanolithography on rigid and flexible substrates,” J. Vac. Sci. Technol. B26(6), 2421–2425 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited