OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2393–2401

Metal-nanowall grating transparent electrodes: Achieving high optical transmittance at high incident angles with minimal diffraction

Ping Kuang, Joong-Mok Park, Geyuan Liu, Zhuo Ye, Wai Leung, Sumit Chaudhary, David Lynch, Kai-Ming Ho, and Kristen Constant  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 2393-2401 (2013)
http://dx.doi.org/10.1364/OE.21.002393


View Full Text Article

Enhanced HTML    Acrobat PDF (2589 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel architecture has been employed to fabricate transparent electrodes with high conductivity and high optical transmittance at high incident angles. Soft lithography is used to fabricate polymer grating patterns onto which thin metallic films are deposited. Etching removes excess metal leaving tall walls of metal. Polymer encapsulation of the structure both protects the metal and minimizes diffraction. Transmission is dependent upon the height of the walls and encapsulation and varies from 60% to 80% for structures with heights of 1400 nm to 300 nm. In encapsulated structures, very little distortion is visible (either parallel to or perpendicular to standing walls) even at viewing angles 60° from the normal. Diffraction is at characterized through measurement of intensity for zeroth through third order diffraction spots. Encapsulation is shown to significantly reduce diffraction. Measurements are supported by optical simulations.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.2770) Diffraction and gratings : Gratings
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Solar Energy

History
Original Manuscript: August 30, 2012
Revised Manuscript: December 2, 2012
Manuscript Accepted: December 4, 2012
Published: January 24, 2013

Citation
Ping Kuang, Joong-Mok Park, Geyuan Liu, Zhuo Ye, Wai Leung, Sumit Chaudhary, David Lynch, Kai-Ming Ho, and Kristen Constant, "Metal-nanowall grating transparent electrodes: Achieving high optical transmittance at high incident angles with minimal diffraction," Opt. Express 21, 2393-2401 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-2393


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. G. Lewis and D. C. Paine, “Applications and processing of transparent conducting oxides,” MRS Bull.25(08), 22–27 (2000). [CrossRef]
  2. T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25(08), 38–44 (2000). [CrossRef]
  3. M. Katayama, “TFT-LCD technology,” Thin Solid Films341(1-2), 140–147 (1999). [CrossRef]
  4. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar-cell,” Appl. Phys. Lett.28(11), 671–673 (1976). [CrossRef]
  5. C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films411(1), 1–5 (2002). [CrossRef]
  6. “Critical materials strategy summary,” Department of Energy, USA (2011). http://energy.gov/pi/office-policy-and-international-affairs/downloads/2011-critical-materials-strategy
  7. Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004). [CrossRef]
  8. C. Guillen and J. Herrero, “Influence of the film thickness on the structure, optical and electrical properties of ITO coatings deposited by sputtering at room temperature on glass and plastic substrates,” Semicond Sci Ech23(7), 075002 (2008). [CrossRef]
  9. M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006). [CrossRef]
  10. J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008). [CrossRef]
  11. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8(2), 689–692 (2008). [CrossRef] [PubMed]
  12. M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(10), 1391–1396 (2007). [CrossRef]
  13. M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4408–4413 (2008). [CrossRef]
  14. M. G. Kang, H. J. Park, S. H. Ahn, and L. J. Guo, “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells,” Sol. Energy Mater. Sol. Cells94(6), 1179–1184 (2010). [CrossRef]
  15. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008). [CrossRef]
  16. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008). [CrossRef]
  17. Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010). [CrossRef]
  18. J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, “Two-polymer microtransfer molding for highly layered microstructures,” Adv. Mater. (Deerfield Beach Fla.)17(20), 2481–2485 (2005). [CrossRef]
  19. P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011). [CrossRef]
  20. Movie clip: http://home.engineering.iastate.edu/~sumitc/documents/electrodes .
  21. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(4), 046607 (2003). [CrossRef] [PubMed]
  22. M. Li, X. H. Hu, Z. Ye, K. M. Ho, J. R. Cao, and M. Miyawaki, “Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation,” Opt. Lett.31(23), 3498–3500 (2006). [CrossRef] [PubMed]
  23. Z. Ye, X. H. Hu, M. Li, K. M. Ho, and P. D. Yang, “Propagation of guided modes in curved nanoribbon waveguides,” Appl. Phys. Lett.89(24), 241108 (2006). [CrossRef]
  24. C. R. Pichard, C. R. Tellier, and A. J. Tosser, “A three-Dimensional model for grain-boundary resistivity in metal-films,” Thin Solid Films62(2), 189–194 (1979). [CrossRef]
  25. P. M. T. M. van Attekum, P. H. Woerlee, G. C. Verkade, and A. A. M. Hoeben, “Influence of grain-boundaries and surface Debye temperature on the electrical-resistance of thin gold-films,” Phys. Rev. B29(2), 645–650 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited