OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2402–2407

Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser

Shi-Ke Wang, Qiu-Yi Ning, Ai-Ping Luo, Zhen-Bin Lin, Zhi-Chao Luo, and Wen-Cheng Xu  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 2402-2407 (2013)
http://dx.doi.org/10.1364/OE.21.002402


View Full Text Article

Enhanced HTML    Acrobat PDF (1649 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generation of mode-locked rectangular pulses operating in dissipative soliton resonance (DSR) region is demonstrated in an erbium-doped figure-eight fiber laser with net anomalous dispersion. The duration of the wave-breaking-free rectangular pulse broadens with the increase of pump power. At a maximum pump power of 341mW, the pulse energy can be up to 3.25 nJ with a repetition rate of 3.54 MHz. Particularly, the spectrum of rectangular pulse operating in DSR exhibits conventional soliton sidebands. The observed results show that the formation of pulse operating in DSR region is independent of mode-locking techniques, which may be helpful for further understanding the DSR phenomenon.

© 2013 OSA

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(250.5530) Optoelectronics : Pulse propagation and temporal solitons

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 18, 2012
Revised Manuscript: December 26, 2012
Manuscript Accepted: January 13, 2013
Published: January 24, 2013

Citation
Shi-Ke Wang, Qiu-Yi Ning, Ai-Ping Luo, Zhen-Bin Lin, Zhi-Chao Luo, and Wen-Cheng Xu, "Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser," Opt. Express 21, 2402-2407 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-2402


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004). [CrossRef]
  2. H. Zhang, D. Y. Tang, L. M. Zhao, and H. Y. Tam, “Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser,” Opt. Lett.33(20), 2317–2319 (2008). [CrossRef] [PubMed]
  3. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett.28(15), 1391–1393 (1992). [CrossRef]
  4. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett.31(12), 1788–1790 (2006). [CrossRef] [PubMed]
  5. L. Yun, X. M. Liu, and D. Mao, “Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser,” Opt. Express20(19), 20992–20997 (2012). [CrossRef] [PubMed]
  6. D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett.27(6), 542–544 (1991). [CrossRef]
  7. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B65(2), 277–294 (1997). [CrossRef]
  8. D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett.32(1), 41–43 (2007). [CrossRef] [PubMed]
  9. D. Y. Tang, L. M. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express13(7), 2289–2294 (2005). [CrossRef] [PubMed]
  10. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express17(2), 455–460 (2009). [CrossRef] [PubMed]
  11. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004). [CrossRef] [PubMed]
  12. B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fiber laser,” Nat. Photonics4(5), 307–311 (2010). [CrossRef]
  13. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A64(3), 033814 (2001). [CrossRef]
  14. X. M. Wei, S. H. Xu, M. Y. Peng, Z. M. Yang, and J. R. Qiu, “All fiber ring bound-soliton laser with a round trip time of 5.7 ns,” Opt. Commun.285(24), 5449–5451 (2012). [CrossRef]
  15. X. M. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express17(12), 9549–9557 (2009). [CrossRef] [PubMed]
  16. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012). [CrossRef]
  17. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga–Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B9(8), 1358–1361 (1992). [CrossRef]
  18. S. Lefrançois, K. Kieu, Y. J. Deng, J. D. Kafka, and F. W. Wise, “Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber,” Opt. Lett.35(10), 1569–1571 (2010). [CrossRef] [PubMed]
  19. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express15(17), 10725–10732 (2007). [CrossRef] [PubMed]
  20. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A372(17), 3124–3128 (2008). [CrossRef]
  21. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A78(2), 023830 (2008). [CrossRef]
  22. W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A79(3), 033840 (2009). [CrossRef]
  23. Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B27(11), 2336–2341 (2010). [CrossRef]
  24. E. Ding, Ph. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett.36(7), 1146–1148 (2011). [CrossRef] [PubMed]
  25. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express17(7), 5580–5584 (2009). [CrossRef] [PubMed]
  26. X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A81(5), 053819 (2010). [CrossRef]
  27. L. Duan, X. M. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express20(1), 265–270 (2012). [CrossRef] [PubMed]
  28. Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, and W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett.37(22), 4777–4779 (2012). [PubMed]
  29. Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright–dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser,” IEEE Photon. J.4(5), 1647–1652 (2012). [CrossRef]
  30. G. P. Agrawal, Applications of Nonlinear Fiber Optics 2nd ed. (Academic Press, 2008), Chap. 3.
  31. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited