OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2444–2451

Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation

Dong Liu, Changzheng Sun, Bing Xiong, and Yi Luo  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2444-2451 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1847 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel and simple method for high frequency millimeter-wave signal generation with integrated twin DFB lasers is proposed and demonstrated. Both theoretical simulation and experimental results confirm that chaos induced by large-signal direct modulation of a solitary laser diode can be suppressed by introducing adequate optical coupling from another dc biased laser diode. Frequency multiplication has been demonstrated employing such chaos suppression scheme using monolithically integrated twin DFB lasers, and low phase noise millimeter wave carrier ten times the modulation frequency is generated.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.1540) Lasers and laser optics : Chaos
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 22, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: January 17, 2013
Published: January 24, 2013

Dong Liu, Changzheng Sun, Bing Xiong, and Yi Luo, "Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation," Opt. Express 21, 2444-2451 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006). [CrossRef]
  2. S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002). [CrossRef]
  3. R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett.10(5), 728–730 (1998). [CrossRef]
  4. M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett.11(3), 101–103 (2001). [CrossRef]
  5. C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech.47(7), 1219–1224 (1999). [CrossRef]
  6. J. Huang, C. Z. Sun, B. Xiong, and Y. Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express17(23), 20727–20734 (2009). [CrossRef] [PubMed]
  7. D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser,” Electron. Lett.31(9), 733–734 (1995). [CrossRef]
  8. L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett.49(6), 1265–1267 (2007). [CrossRef]
  9. T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.19(16), 1191–1193 (2007). [CrossRef]
  10. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator,” J. Lightwave Technol.23(9), 2687–2695 (2005). [CrossRef]
  11. K. Petermann, Laser Diode Modulation and Noise (Kluwer, 1991).
  12. H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55μm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron.29(6), 1668–1675 (1993). [CrossRef]
  13. J. Ohtsubo, Semiconductor Lasers Stability, Instability and Chaos (Springer, 2006), Chap. 11.
  14. S. Rajesh and V. M. Nandakumaran, “Suppression of chaos in a directly modulated semiconductor laser with delayed optoelectronic feedback,” Phys. Lett. A319(3–4), 340–347 (2003). [CrossRef]
  15. V. Bindu and V. M. Nandakumaran, “Numerical studies on bi-directionally coupled directly modulated semiconductor lasers,” Phys. Lett. A277(6), 345–351 (2000). [CrossRef]
  16. H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005). [CrossRef] [PubMed]
  17. S. P. Hegarty, D. Goulding, B. Kelleher, G. Huyet, M.-T. Todaro, A. Salhi, A. Passaseo, and M. De Vittorio, “Phase-locked mutually coupled 1.3 μm quantum-dot lasers,” Opt. Lett.32(22), 3245–3247 (2007). [CrossRef]
  18. J. Mulet, C. Masoller, and C. R. Mirasso, “Modeling bidirectionally coupled single-mode semiconductor lasers,” Phys. Rev. A65(6), 063815 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited