OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2452–2462

Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain

Tsong-Dong Wang, Yen-Chieh Huang, Ming-Yun Chuang, Yen-Hou Lin, Ching-Han Lee, Yen-Yin Lin, Fan-Yi Lin, and Galiya Kh. Kitaeva  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 2452-2462 (2013)
http://dx.doi.org/10.1364/OE.21.002452


View Full Text Article

Enhanced HTML    Acrobat PDF (1718 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical parametric mixing is a popular scheme to generate an idler wave at THz frequencies, although the THz wave is often absorbing in the nonlinear optical material. It is widely suggested that the useful material length for co-directional parametric mixing with strong THz-wave absorption is comparable to the THz-wave absorption length in the material. Here we show that, even in the limit of the absorption loss exceeding parametric gain, the THz idler wave can grows monotonically from optical parametric amplification over a much longer distance in a nonlinear optical material until pump depletion. The coherent production of the non-absorbing signal wave can assist the growth of the highly absorbing idler wave. We also show that, for the case of an equal input pump and signal in difference frequency generation, the quick saturation of the THz idler wave predicted from a much simplified and yet popular plane-wave model fails when fast diffraction of the THz wave from the co-propagating optical mixing waves is considered.

© 2013 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 28, 2012
Manuscript Accepted: January 14, 2013
Published: January 24, 2013

Citation
Tsong-Dong Wang, Yen-Chieh Huang, Ming-Yun Chuang, Yen-Hou Lin, Ching-Han Lee, Yen-Yin Lin, Fan-Yi Lin, and Galiya Kh. Kitaeva, "Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain," Opt. Express 21, 2452-2462 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-2452


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett.15(3), 102–105 (1969). [CrossRef]
  2. B. C. Johnson, H. E. Puthoff, J. Soohoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett.18(5), 181–183 (1971). [CrossRef]
  3. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26(8), 418–421 (1975). [CrossRef]
  4. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002). [CrossRef]
  5. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97, 123505 (2005), doi:. [CrossRef]
  6. K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition,” Appl. Phys. Lett.71(6), 753–755 (1997). [CrossRef]
  7. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett.68(18), 2483–2485 (1996). [CrossRef]
  8. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt.40(9), 1423–1426 (2001). [CrossRef] [PubMed]
  9. K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium nobate crystal,” Opt. Express17(9), 7102–7109 (2009). [CrossRef] [PubMed]
  10. J. B. Khurgin, D. Yang, and Y. J. Ding, “Generation of mid-infrared radiation in the highly-absorbing nonlinear medium,” J. Opt. Soc. Am. B18(3), 340–343 (2001). [CrossRef]
  11. A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl Phys Lett83, 3000–3002 doi:Doi (2003). [CrossRef]
  12. T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95, 7588–7591, doi:Doi (2004). [CrossRef]
  13. M. Cronin-Golomb, “Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production,” Opt. Lett.29(17), 2046–2048 (2004). [CrossRef] [PubMed]
  14. K. Kawase, K. Suizu, and S. Hayashi, and T. Shibuya” Nonlinear optical terahertz wave sources,” Opt. Spectroscopy 108, 841–845, doi:Doi (2010). [CrossRef]
  15. J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008). [CrossRef]
  16. G. Kh. Kitaeva, “THz generation by means of optical laser,” Laser Phys. Lett. 5, 559–576 doi: (2008). [CrossRef]
  17. J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B.86(2), 185–196 (2007). [CrossRef]
  18. J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, R. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B.86(2), 197–208 (2007). [CrossRef]
  19. K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron.14(2), 295–306 (2008). [CrossRef]
  20. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B12(11), 2102–2116 (1995). [CrossRef]
  21. D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express17(8), 6623–6628 (2009). [CrossRef] [PubMed]
  22. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001). [CrossRef] [PubMed]
  23. Y. H. Avetisyan, “Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique,” Opt. Lett.35(15), 2508–2510 (2010). [CrossRef] [PubMed]
  24. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006). [CrossRef] [PubMed]
  25. Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B.73(5), 511–514 (2001). [CrossRef]
  26. Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference-frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81, 3323–3325 (2002).
  27. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005). [CrossRef] [PubMed]
  28. Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate,” Electron. Lett.41(12), 712–713 (2005). [CrossRef]
  29. T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting Terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron.39(1), 166–171 (2003). [CrossRef]
  30. L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett.73(12), 1610–1612 (1998). [CrossRef]
  31. A. Yariv and P. Yeh, Photonics, 6th Ed. (Oxford University Press, New York, Oxford, 2007).
  32. D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and K. L. Vodopyanov, “16-microm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs,” Opt. Lett.23(13), 1010–1012 (1998). [CrossRef] [PubMed]
  33. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett.27(16), 1454–1456 (2002). [CrossRef] [PubMed]
  34. K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010). [CrossRef]
  35. K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007). [CrossRef]
  36. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett.24(15), 1065–1067 (1999). [CrossRef] [PubMed]
  37. S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, “New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region,” Opt. Express18(16), 17306–17312 (2010). [CrossRef] [PubMed]
  38. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express20(3), 2881–2886 (2012). [CrossRef] [PubMed]
  39. G. Kh. Kitaeva and A. N. Penin, “Parametric frequency conversion in layered nonlinear media,” J. Exp. Theor. Phys.98(2), 272–286 (2004). [CrossRef]
  40. Y. C. Huang, T. D. Wang, Y. H. Lin, C. H. Lee, M. Y. Chuang, Y. Y. Lin, and F. Y. Lin, “Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide,” Opt. Express19(24), 24577–24582 (2011). [CrossRef] [PubMed]
  41. G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of Terahertz wave brightness under nonlinear-optical detection,” J. Infrared. Millim. Te.32(10), 1144–1156 (2011). [CrossRef]
  42. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B.78, 593–599 (2004). [CrossRef]
  43. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited