OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2463–2473

Tight-binding calculation of radiation loss in photonic crystal CROW

Jing Ma, Luis Javier Martínez, Shanhui Fan, and Michelle L. Povinelli  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2463-2473 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The tight binding approximation (TBA) is used to relate the intrinsic, radiation loss of a coupled resonator optical waveguide (CROW) to that of a single constituent resonator within a light cone picture. We verify the validity of the TBA via direct, full-field simulation of CROWs based on the L2 photonic crystal cavity. The TBA predicts that the quality factor of the CROW increases with that of the isolated cavity. Moreover, our results provide a method to design CROWs with low intrinsic loss across the entire waveguide band.

© 2013 OSA

OCIS Codes
(230.4555) Optical devices : Coupled resonators
(130.5296) Integrated optics : Photonic crystal waveguides
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 12, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: January 10, 2013
Published: January 25, 2013

Jing Ma, Luis Javier Martínez, Shanhui Fan, and Michelle L. Povinelli, "Tight-binding calculation of radiation loss in photonic crystal CROW," Opt. Express 21, 2463-2473 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24(11), 711–713 (1999). [CrossRef] [PubMed]
  2. R. M. De La Rue, “Optical delays: slower for longer,” Nat. Photonics2(12), 715–716 (2008). [CrossRef]
  3. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B57(19), 12127–12133 (1998). [CrossRef]
  4. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004). [CrossRef] [PubMed]
  5. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett.31(13), 1985–1987 (2006). [CrossRef] [PubMed]
  6. J. K. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett.31(4), 456–458 (2006). [CrossRef] [PubMed]
  7. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express15(25), 17273–17282 (2007). [CrossRef] [PubMed]
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007). [CrossRef]
  9. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett.26(13), 1019–1021 (2001). [CrossRef] [PubMed]
  10. E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,” IEEE J. Quantum Electron.38(7), 837–843 (2002). [CrossRef]
  11. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron.8(4), 909–918 (2002). [CrossRef]
  12. P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett.17(6), 1199–1201 (2005). [CrossRef]
  13. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express15(3), 1228–1233 (2007). [CrossRef] [PubMed]
  14. J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett.34(3), 359–361 (2009). [CrossRef] [PubMed]
  15. J. Jágerská, H. Zhang, N. Le Thomas, and R. Houdré, “Radiation loss of photonic crystal coupled-cavity waveguides,” Appl. Phys. Lett.95(11), 111105 (2009). [CrossRef]
  16. N. Matsuda, T. Kato, K.-i. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express19(21), 19861–19874 (2011). [CrossRef] [PubMed]
  17. H.-C. Liu and A. Yariv, “Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators,” Opt. Express20(8), 9249–9263 (2012). [CrossRef] [PubMed]
  18. Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Analysis of leakage losses in one-dimensional photonic crystal coupled resonator optical waveguide using 3-D finite element method,” J. Lightwave Technol.28(20), 2977–2983 (2010). [CrossRef]
  19. A. Martínez, J. García, P. Sanchis, F. Cuesta-Soto, J. Blasco, and J. Martí, “Intrinsic losses of coupled-cavity waveguides in planar-photonic crystals,” Opt. Lett.32(6), 635–637 (2007). [CrossRef] [PubMed]
  20. M. L. Povinelli and S. Fan, “Radiation loss of coupled-resonator waveguides in photonic-crystal slabs,” Appl. Phys. Lett.89(19), 191114 (2006). [CrossRef]
  21. D. P. Fussell and M. M. Dignam, “Engineering the quality factors of coupled-cavity modes in photonic crystal slabs,” Appl. Phys. Lett.90(18), 183121 (2007). [CrossRef]
  22. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007). [CrossRef]
  23. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron.38(7), 850–856 (2002). [CrossRef]
  24. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73(23), 235114 (2006). [CrossRef]
  25. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B17(3), 387–400 (2000). [CrossRef]
  26. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 1995).
  27. A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007). [CrossRef]
  28. C. A. Mejia, A. Dutt, and M. L. Povinelli, “Light-assisted templated self assembly using photonic crystal slabs,” Opt. Express19(12), 11422–11428 (2011). [CrossRef] [PubMed]
  29. J. Ma, L. J. Martínez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice,” Opt. Express20(6), 6816–6824 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited