OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23036–23047

Design of plasmonic nano-antenna for total internal reflection fluorescence microscopy

Eun-Khwang Lee, Jung-Hwan Song, Kwang-Yong Jeong, and Min-Kyo Seo  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23036-23047 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2423 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a gold modified bow-tie plasmonic nano-antenna, which can be suitably used in combination with total internal reflection fluorescence microscopy. The plasmonic nano-antenna, supporting well-separated multiple resonances, not only concentrates the total internal reflection evanescent field at the deep subwavelength scale, but also enhances fluorescence emission by the Purcell effect. Finite-difference time-domain computations show that the enhancement of the excitation light strongly correlates with the far-field radiation pattern radiated from the antenna. Depending on the antenna geometry, the resonant modes are widely tuned and their wavelengths can be easily matched to the diverse emission or excitation wavelengths of fluorophores.

© 2013 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons
(260.6970) Physical optics : Total internal reflection
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: June 10, 2013
Revised Manuscript: September 11, 2013
Manuscript Accepted: September 15, 2013
Published: September 23, 2013

Eun-Khwang Lee, Jung-Hwan Song, Kwang-Yong Jeong, and Min-Kyo Seo, "Design of plasmonic nano-antenna for total internal reflection fluorescence microscopy," Opt. Express 21, 23036-23047 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. M. Reichert and G. A. Truskey, “Total internal reflection microscopy,” J. Cell Sci.96, 219–230 (1990). [PubMed]
  2. K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010). [CrossRef]
  3. M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: Different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat β-cells,” Biochem. J.381(1), 13–18 (2004). [CrossRef] [PubMed]
  4. J. Buijs and V. Hlady, “Adsorption kinetics, conformation, and mobility of the growth hormone and lysozyme on solid surfaces, studied with TIRF,” J. Colloid Interface Sci.190(1), 171–181 (1997). [CrossRef] [PubMed]
  5. L. Tedeschi, C. Domenici, A. Ahluwalia, F. Baldini, and A. Mencaglia, “Antibody immobilisation on fibre optic TIRF sensors,” Biosens. Bioelectron.19(2), 85–93 (2003). [CrossRef] [PubMed]
  6. S. A. Rockhold, R. D. Quinn, R. A. van Wagenen, J. D. Andrade, and M. Reichert, “Total internal reflection fluorescence as a quantitative probe of protein adsorption,” J. Electroanal. Chem.150(1-2), 261–275 (1983). [CrossRef]
  7. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14271–14276 (2008). [CrossRef] [PubMed]
  8. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  9. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  10. Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011). [CrossRef] [PubMed]
  11. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008). [CrossRef]
  12. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010). [CrossRef] [PubMed]
  13. Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C114(16), 7269–7273 (2010). [CrossRef]
  14. K. C. Y. Huang, M. K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012).
  15. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999). [CrossRef]
  16. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011). [CrossRef] [PubMed]
  17. K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express19(20), 19084–19092 (2011). [CrossRef] [PubMed]
  18. B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009). [CrossRef]
  19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  20. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2006).
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  23. C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003). [CrossRef] [PubMed]
  24. K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000). [CrossRef] [PubMed]
  25. Z. Li and Y. Zhang, “Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission,” Angew. Chem.118(46), 7896 (2006). [CrossRef]
  26. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011). [CrossRef] [PubMed]
  27. T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012). [CrossRef] [PubMed]
  28. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012). [CrossRef] [PubMed]
  29. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009). [CrossRef]
  30. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2012).
  31. K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatters buried in stratified grounds,” IEEE Trans. Antenn. Propag.44(8), 1150–1157 (1996). [CrossRef]
  32. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999).
  33. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat Commun4, 1750 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited