OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23097–23106

Nanoplasmonic surfaces enabling strong surface-normal electric field enhancement

Kıvanç Güngör, Emre Ünal, and Hilmi Volkan Demir  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23097-23106 (2013)
http://dx.doi.org/10.1364/OE.21.023097


View Full Text Article

Enhanced HTML    Acrobat PDF (1697 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conventional two-dimensional (2D) plasmonic arrays provide electric field intensity enhancement in the plane, typically with a surface coverage around 50% in the plan-view. Here, we show nanoplasmonic three-dimensional (3D) surfaces with 100% surface coverage enabling strong surface-normal field enhancement. Experimental measurements are found to agree well with the full electromagnetic solution. Along with the surface-normal localization when using the plasmonic 3D-surface, observed maximum field enhancement is 7.2-fold stronger in the 3D-surface than that of the 2D counterpart structure. 3D-plasmonic nonplanar surfaces provide the ability to generate volumetric field enhancement, possibly useful for enhanced plasmonic coupling and interactions.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 2, 2013
Revised Manuscript: August 14, 2013
Manuscript Accepted: September 16, 2013
Published: September 23, 2013

Citation
Kıvanç Güngör, Emre Ünal, and Hilmi Volkan Demir, "Nanoplasmonic surfaces enabling strong surface-normal electric field enhancement," Opt. Express 21, 23097-23106 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23097


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  2. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21(34), 3504–3509 (2009). [CrossRef]
  3. S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology24(15), 155201 (2013). [CrossRef] [PubMed]
  4. T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano5(2), 1328–1334 (2011). [CrossRef] [PubMed]
  5. I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express15(22), 14289–14298 (2007). [CrossRef] [PubMed]
  6. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  7. C. Bauer and H. Giessen, “Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures,” Opt. Express21(S3), A363–A371 (2013). [CrossRef]
  8. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics1(1), 5–33 (2006). [CrossRef] [PubMed]
  9. H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, “Optimized plasmonic nanostructures for improved sensing activities,” Opt. Express20(19), 21278–21290 (2012). [CrossRef] [PubMed]
  10. B. Sharma, R. R. Frontiera, A. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today15(1-2), 16–25 (2012). [CrossRef]
  11. C.-Y. Tsai, K.-H. Chang, C.-Y. Wu, and P.-T. Lee, “The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays,” Opt. Express21(12), 14090–14096 (2013). [CrossRef] [PubMed]
  12. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012). [CrossRef] [PubMed]
  13. J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics3(4), 127–150 (2008). [CrossRef]
  14. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011). [CrossRef] [PubMed]
  15. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater.20(1), 26–30 (2008). [CrossRef]
  16. S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B84(24), 245424 (2011). [CrossRef]
  17. A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett.8(11), 4033–4038 (2008). [CrossRef] [PubMed]
  18. Y. Lu, Y. Yin, Z. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett.2(7), 785–788 (2002). [CrossRef]
  19. H. W. Deckman, “Natural lithography,” Appl. Phys. Lett.41(4), 377 (1982). [CrossRef]
  20. C. Haynes and R. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001). [CrossRef]
  21. E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B109(47), 22351–22358 (2005). [CrossRef] [PubMed]
  22. T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C114(16), 7480–7488 (2010). [CrossRef]
  23. P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano3(12), 3987–3992 (2009). [CrossRef] [PubMed]
  24. J. Y. Cheng, A. M. Mayes, and C. A. Ross, “Nanostructure engineering by templated self-assembly of block copolymers,” Nat. Mater.3(11), 823–828 (2004). [CrossRef] [PubMed]
  25. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011). [CrossRef] [PubMed]
  26. E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Lett.3(3), 413–417 (2003). [CrossRef]
  27. X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc.134(1), 146–149 (2012). [CrossRef] [PubMed]
  28. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12428–12433 (2004). [CrossRef] [PubMed]
  29. Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem.207(1), 126–134 (2009). [CrossRef]
  30. Q. Hang, D. A. Hill, and G. H. Bernstein, “Efficient removers for poly(methylmethacrylate),” JVST B21, 91 (2003).
  31. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MP4 (620 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited