OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23241–23249

Entanglement distribution over 300 km of fiber

Takahiro Inagaki, Nobuyuki Matsuda, Osamu Tadanaga, Masaki Asobe, and Hiroki Takesue  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23241-23249 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the distribution of time-bin entangled photon pairs over 300 km of optical fiber. We realized this by using a high-speed and high signal-to-noise ratio entanglement generation/evaluation setup that consists of periodically poled lithium niobate waveguides and superconducting single photon detectors. The observed two-photon interference fringes exhibited a visibility of 84%. We confirmed the violation of Bell’s inequality by 2.9 standard deviations.

© 2013 OSA

OCIS Codes
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: August 2, 2013
Revised Manuscript: August 30, 2013
Manuscript Accepted: September 1, 2013
Published: September 24, 2013

Takahiro Inagaki, Nobuyuki Matsuda, Osamu Tadanaga, Masaki Asobe, and Hiroki Takesue, "Entanglement distribution over 300 km of fiber," Opt. Express 21, 23241-23249 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007). [CrossRef]
  2. S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett.37(6), 1008–1010 (2012). [CrossRef] [PubMed]
  3. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009). [CrossRef]
  4. J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17(14), 11440–11449 (2009). [CrossRef] [PubMed]
  5. J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012). [CrossRef] [PubMed]
  6. X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012). [CrossRef] [PubMed]
  7. M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-Ready-Detectors” Bell Experiment via Entanglement Swapping,” Phys. Rev. Lett.71(26), 4287–4290 (1993). [CrossRef] [PubMed]
  8. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81(26), 5932–5935 (1998). [CrossRef]
  9. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental Entanglement Swapping: Entangling Photons That Never Interacted,” Phys. Rev. Lett.80(18), 3891–3894 (1998). [CrossRef]
  10. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett.76(5), 722–725 (1996). [CrossRef] [PubMed]
  11. W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59(1), 169–181 (1999). [CrossRef]
  12. H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A70(3), 031802 (2004). [CrossRef]
  13. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett.30(10), 1201–1203 (2005). [CrossRef] [PubMed]
  14. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93(18), 180502 (2004). [CrossRef] [PubMed]
  15. H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Opt. Express14(8), 3453–3460 (2006). [CrossRef] [PubMed]
  16. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express15(12), 7853–7862 (2007). [CrossRef] [PubMed]
  17. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express15(21), 13957–13964 (2007). [CrossRef] [PubMed]
  18. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express16(8), 5776–5781 (2008). [CrossRef] [PubMed]
  19. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30(13), 1725–1727 (2005). [CrossRef] [PubMed]
  20. T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5-mum band with periodically poled lithium niobate waveguide,” Opt. Express15(4), 1679–1683 (2007). [CrossRef] [PubMed]
  21. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001). [CrossRef]
  22. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23(15), 880–884 (1969). [CrossRef]
  23. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett.81(17), 3563–3566 (1998). [CrossRef]
  24. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A69(5), 050304 (2004). [CrossRef]
  25. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62(19), 2205–2208 (1989). [CrossRef] [PubMed]
  26. S. Aerts, P. Kwiat, J. Å. Larsson, and M. Zukowski, “Two-Photon Franson-Type Experiments and Local Realism,” Phys. Rev. Lett.83(15), 2872–2875 (1999). [CrossRef]
  27. A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell's Inequalities Using Time- Varying Analyzers,” Phys. Rev. Lett.49(25), 1804–1807 (1982). [CrossRef]
  28. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  29. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013). [CrossRef]
  30. T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009). [CrossRef]
  31. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett.68(5), 557–559 (1992). [CrossRef] [PubMed]
  32. B. Miquel and H. Takesue, “Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited