OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23531–23542

Surface sensitivity of Rayleigh anomalies in metallic nanogratings

Silvio Savoia, Armando Ricciardi, Alessio Crescitelli, Carmine Granata, Emanuela Esposito, Vincenzo Galdi, and Andrea Cusano  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23531-23542 (2013)
http://dx.doi.org/10.1364/OE.21.023531


View Full Text Article

Enhanced HTML    Acrobat PDF (1513 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sensing schemes based on Rayleigh anomalies (RAs) in metal nanogratings exhibit an impressive bulk refractive-index sensitivity determined solely by the grating period. However, the surface sensitivity (which is a key figure of merit for label-free chemical and biological sensing) needs to be carefully investigated to assess the actual applicability of this technological platform. In this paper, we explore the sensitivity of RAs in metal nanogratings when local refractive-index changes are considered. Our studies reveal that the surface sensitivity deteriorates up to two orders of magnitude by comparison with the corresponding bulk value; interestingly, this residual sensitivity is not attributable to the wavelength shift of the RAs, which are completely insensitive to local refractive-index changes, but rather to a strictly connected plasmonic effect. Our analysis for increasing overlay thickness reveals an ultimate surface sensitivity that approaches the RA bulk value, which turns out to be the upper-limit of grating-assisted surface-plasmon-polariton sensitivities

© 2013 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 22, 2013
Manuscript Accepted: August 23, 2013
Published: September 26, 2013

Citation
Silvio Savoia, Armando Ricciardi, Alessio Crescitelli, Carmine Granata, Emanuela Esposito, Vincenzo Galdi, and Andrea Cusano, "Surface sensitivity of Rayleigh anomalies in metallic nanogratings," Opt. Express 21, 23531-23542 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23531


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4, 269–275 (1902).
  2. L. Rayleigh, “Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag.14, 60–65 (1907).
  3. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond.79(532), 399–416 (1907). [CrossRef]
  4. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am.31(3), 213–222 (1941). [CrossRef]
  5. D. Maystre, “Theory of Wood’s anomalies,” in Plasmonics, S. Enoch and N. Bonod, eds. (Springer, 2012), pp. 39–83.
  6. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt.4(10), 1275–1297 (1965). [CrossRef]
  7. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B67(8), 085415 (2003). [CrossRef]
  8. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express15(26), 18119–18129 (2007). [CrossRef] [PubMed]
  9. S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber,” Small8(12), 1937–1944 (2012). [CrossRef] [PubMed]
  10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  11. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  12. J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B68(20), 205103 (2003). [CrossRef]
  13. A. Crescitelli, A. Ricciardi, M. Consales, E. Esposito, C. Granata, V. Galdi, A. Cutolo, and A. Cusano, “Nanostructured metallo-dielectric quasi-crystals: Towards photonic-plasmonic resonance engineering,” Adv. Funct. Mater.22(20), 4389–4398 (2012). [CrossRef]
  14. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  15. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  16. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express17(4), 2334–2340 (2009). [CrossRef] [PubMed]
  17. P. Pilla, A. Sandomenico, V. Malachovská, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron.31(1), 486–491 (2012). [CrossRef] [PubMed]
  18. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited