OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23736–23747

Terahertz wireless communications based on photonics technologies

Tadao Nagatsuma, Shogo Horiguchi, Yusuke Minamikata, Yasuyuki Yoshimizu, Shintaro Hisatake, Shigeru Kuwano, Naoto Yoshimoto, Jun Terada, and Hiroyuki Takahashi  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23736-23747 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1352 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Thz Photonics

Original Manuscript: July 16, 2013
Revised Manuscript: September 19, 2013
Manuscript Accepted: September 23, 2013
Published: September 30, 2013

Tadao Nagatsuma, Shogo Horiguchi, Yusuke Minamikata, Yasuyuki Yoshimizu, Shintaro Hisatake, Shigeru Kuwano, Naoto Yoshimoto, Jun Terada, and Hiroyuki Takahashi, "Terahertz wireless communications based on photonics technologies," Opt. Express 21, 23736-23747 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Nagatsuma, H.-J. Song, and Y. Kado, “Challenges for ultrahigh speed wireless communications using terahertz waves,” J. Terahertz Sci. Technol.3, 55–65 (2010).
  2. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107(11), 111101 (2010). [CrossRef]
  3. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Milli. Terahz. Waves32(2), 143–171 (2011). [CrossRef]
  4. H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol.1(1), 256–263 (2011). [CrossRef]
  5. A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol.26(15), 2338–2344 (2008). [CrossRef]
  6. A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microw. Theory Tech.57(5), 1102–1109 (2009). [CrossRef]
  7. J. Takeuchi, A. Hirata, H. Takahashi, and N. Kukutsu, “10-Gbit/s bi-directional and 20-Gbit/s uni-directional data transmission over a 120-GHz-band wireless link using a finline ortho-mode transducer,” in Proc. Asia-Pacific Microwave Conf.(APMC2010), pp. 195–198.
  8. R. Fujimoto, R. M. Motoyoshi, K. Takano, and M. Fujishima, “A 120 GHz / 140 GHz dual-channel ASK receiver using standard 65 nm CMOS technology,” in Proc. 41st European Microwave Conf. (EuMC2011), pp. 1189–1192.
  9. C. Wang, C. Lin, Q. Chen, X. Deng, and J. Zhang, “0.14 THz high speed data communication over 1.5 kilometers,” in Tech. Dig. of Infrared Millimeter, and Terahertz Waves (IRMMW-THz2012), paper Tue-A-2–4.
  10. G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 μm THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett.46(19), 1349–1351 (2010). [CrossRef]
  11. I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol.1(2), 477–487 (2011). [CrossRef]
  12. S. Koenig, D. Lopez-Diaz, J. Antes, R. Henneberger, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, I. Kallfass, and J. Lewthold, “100 Gbit/s wireless link with mm-wave photonics,” in Tech. Dig. of Optical Fiber Communication Conference and Exposition and the National Fiber Optics Engineers Conference (OFC/NFOEC2013), postdeadline paper.
  13. H.-J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8 Gbit/s wireless data transmission at 250 GHz,” Electron. Lett.45(22), 1121–1122 (2009). [CrossRef]
  14. C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett.44(3), 213–214 (2008). [CrossRef]
  15. R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron.14(2), 421–430 (2008). [CrossRef]
  16. T. Nagatsuma, H.-J. Song, Y. Fujimoto, A. Hirata, K. Miyake, K. Ajito, A. Wakatuski, T. Furuta, and N. Kukutsu, “Giga-bit wireless link using 300-400 GHz bands,” in Tech. Dig. of IEEE International Topical Meeting on Microwave Photonics (MWP2009), paper Th.2.3.
  17. K. Arakawa, T. Takada, K. Miyake, H.-J. Song, K. Ajito, N. Kukutsu, and T. Nagatsuma, “Application of high-power photodiode-arrays to 300 GHz-band wireless link,” in Tech. Dig. Asia-Pacific Microwave Photonics Conference (APMP 2012), paper WD-3.
  18. H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24 Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett.48(15), 953–954 (2012). [CrossRef]
  19. T. Nagatsuma, “Generating millimeter and terahertz waves by photonics for communications and sensing,” in Tech. Dig. of IEEE International Microwave Symposium (IMS2013), paper WE2H–1.
  20. L. Moeller, J. F. Federici, and K. Su, “THz wireless communications: 2.5 Gb/s error-free transmission at 625 GHz using a narrow-bandwidth 1 mW THz source,” in Tech. Dig. of URSI General Assembly and Scientific Symposium, Turkey (URSI GASS2011), paper DAF2–7. [CrossRef]
  21. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express19(25), 24944–24949 (2011). [CrossRef] [PubMed]
  22. A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, “40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express19(26), B56–B63 (2011). [CrossRef] [PubMed]
  23. R. Sambaraju, D. Zibar, A. Caballero, I. T. Monroy, R. Alemany, and J. Herrera, “100 GHz wireless on-off-keying link employing all photonic RF carrier generation and digital coherent detection,” in Proc. of Access Networks and In-house Communications (ANIC2010), paper AThA4. [CrossRef]
  24. A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, “20-Gb/s QPSK W-band (75-110GHz) wireless link in free space using radio-over-fiber technique,” IEICE Electron. Express8(8), 612–617 (2011). [CrossRef]
  25. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy, “25 Gbit/s QPSK hybrid fiber-wireless transmission in the W-Band (75-110GHz) with remote antenna unit for in-building wireless networks,” IEEE Photonics Journal4(3), 691–698 (2012). [CrossRef]
  26. A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, Y. Yasumura, and K. Kitayama, “Optical and millimeter-wave radio seamless MIMO transmission based on a radio over fiber technology,” Opt. Express20(28), 29395–29403 (2012). [CrossRef] [PubMed]
  27. X. Li, Z. Dong, J. Yu, N. Chi, Y. Shao, and G. K. Chang, “Fiber-wireless transmission system of 108 Gb/sdata over 80 km fiber and 2×2multiple-input multiple-output wireless links at 100 GHz W-band frequency,” Opt. Lett.37(24), 5106–5108 (2012). [CrossRef] [PubMed]
  28. K. Okada, L. Ning, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, S. Ito, W. Chaivipas, R. Minami, T. Yamaguchi, Y. Takeuchi, H. Yamagishi, M. Noda, and A. Matsuzawa, “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c,” IEEE J. Solid-State Circuits46(12), 2988–3004 (2011).
  29. S. Emami, R. F. Wiser, E. Ali, M. G. Forbes, M. Q. Gordon, S. Lo Guan Xiang, P. T. McElwee, J. Parker, J. R. Tani, J. M. Gilbert, and C. H. Doan, “A 60GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications,” in Tech. Dig. of IEEE Intern. Solid-State Circuits Conference (ISSCC2011), pp. 164–166. [CrossRef]
  30. A. Valdes-Garcia, S. Reynolds, A. Natarajan, Dong Kam, Duixian Liu, Y.-L. O. Jie-Wei Lai, Huang, Ping-Yu Chen, J.-H. C. Ming-Da Tsai, S. Zhan, Nicolson, and B. Floyd, “Single-element and phased-array transceiver chipsets for 60-GHz Gb/s communications,” IEEE Commun. Mag.49(4), 120–131 (2011). [CrossRef]
  31. M. Weiß, A. Stöhr, F. Lecoche, and B. Charbonnier, “27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM,” in Tech. Dig. of IEEE International Topical Meeting on Microwave Photonics (MWP2009), postdeadline paper.
  32. N. E. C. Corp, homepage, http://www.nec.com/en/global/prod/nw/pasolink/products/epaso.html
  33. Loea Corp, homepage, http://www.loeacom.com/pages/products_l2250.htm
  34. BridgeWave Communications, Inc., homepage, http://www.bridgewave.com/downloads/BridgeWave_products_at_a_glance_brochure.pdf
  35. V. Dyadyuk, J. D. Bunton, J. Pathikulangara, R. Kendall, O. Sevimli, L. Stokes, and D. A. Abbott, “A multigigabit millimeter-wave communication system with improved spectral efficiency,” IEEE Trans. Microw. Theory Tech.55(12), 2813–2821 (2007). [CrossRef]
  36. Y. Nakasha, M. Sato, T. Tajima, Y. Kawano, T. Suzuki, T. Takahashi, K. Makiyama, T. Ohki, and N. Hara, “W-band transmitter and receiver for 10-Gb/s impulse radio with an optical-fiber interface,” IEEE Trans. Microw. Theory Tech.57(12), 3171–3180 (2009). [CrossRef]
  37. A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C(7), 1458–1464 (2005). [CrossRef]
  38. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photon. Rev.3(1-2), 123–137 (2009). [CrossRef]
  39. Recommendation ITU-T G.709 /Y.1331 (2012), “Interfaces for the optical transport network (OTN)”.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited