OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23822–23837

Photon counting compressive depth mapping

Gregory A. Howland, Daniel J. Lum, Matthew R. Ware, and John C. Howell  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23822-23837 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3611 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 × 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 × 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second.

© 2013 Optical Society of America

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(280.3640) Remote sensing and sensors : Lidar
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

Original Manuscript: July 15, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 14, 2013
Published: September 30, 2013

Gregory A. Howland, Daniel J. Lum, Matthew R. Ware, and John C. Howell, "Photon counting compressive depth mapping," Opt. Express 21, 23822-23837 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng.40, 10–19 (2001). [CrossRef]
  2. C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS Journal of Photogrammetry and Remote Sensing64, 1–16 (2009). [CrossRef]
  3. S. Hussmann and T. Liepert, “Three-dimensional TOF robot vision system,” IEEE Trans. Instrum. Meas.58, 141–146 (2009). [CrossRef]
  4. S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (TOF) cameras: A survey,” IEEE Sensors J.11, 1917–1926 (2011). [CrossRef]
  5. B. Schwarz, “Mapping the world in 3D,” Nat. Photonics4, 429–430 (2010). [CrossRef]
  6. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express21, 8904–8915 (2013). [CrossRef] [PubMed]
  7. M. Richard and W. Davis, “Jigsaw: A foliage-penetrating 3D imaging laser radar system,” Lincoln Laboratory Journal15, 1 (2005).
  8. M. Vaidyanathan, S. Blask, T. Higgins, W. Clifton, D. Davidsohn, R. Carson, V. Reynolds, J. Pfannenstiel, R. Cannata, R. Marino, J. Drover, R. Hatch, D. Schue, R. Freehart, G. Rowe, J. Mooney, C. Hart, B. Stanley, J. McLaughlin, E. I. Lee, J. Berenholtz, B. Aull, J. Zayhowski, A. Vasile, P. Ramaswami, K. Ingersoll, T. Amoruso, I. Khan, W. Davis, and R. Heinrichs, “Jigsaw phase III: a miniaturized airborne 3-D imaging laser radar with photon-counting sensitivity for foliage penetration,” Proc. SPIE6550, 65500N (2007). [CrossRef]
  9. M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D ladar imaging,” Proc. SPIE8375, 83750D (2012).
  10. M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 × 128 and 32 × 32 geiger-mode APD FPAS for single photon 3D ladar imaging,” Proc. SPIE8033, 80330G (2011). [CrossRef]
  11. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag.25, 83–91 (2008). [CrossRef]
  12. M. Sarkis and K. Diepold, “Depth map compression via compressed sensing,” in Proceedings of 16th IEEE International Conference on Image Processing, (IEEE, 2009), pp. 737–740.
  13. A. Kirmani, A. Colaço, F. N. C. Wong, and V. K. Goyal, “Exploiting sparsity in time-of-flight range acquisition using a single time-resolved sensor,” Opt. Express19, 21485–21507 (2011). [CrossRef] [PubMed]
  14. G. A. Howland, P. B. Dixon, and J. C. Howell, “Photon-counting compressive sensing laser radar for 3D imaging,” Appl. Opt.50, 5917–5920 (2011). [CrossRef] [PubMed]
  15. L. Li, L. Wu, X. Wang, and E. Dang, “Gated viewing laser imaging with compressive sensing,” Appl. Opt.51, 2706–2712 (2012). [CrossRef] [PubMed]
  16. W. R. Babbitt, Z. W. Barber, and C. Renner, “Compressive laser ranging,” Opt. Lett.36, 4794–4796 (2011). [CrossRef] [PubMed]
  17. D. L. Donoho, “Compressed Sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006). [CrossRef]
  18. E. Candés and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl.23, 969 (2007). [CrossRef]
  19. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med58, 1182–1195 (2007). [CrossRef] [PubMed]
  20. J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE J. Sel. Topics Signal Process.2, 718–726 (2008). [CrossRef]
  21. S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, “Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators,” New J. Phys.14, 095022 (2012). [CrossRef]
  22. G. A. Howland and J. C. Howell, “Efficient high-dimensional entanglement imaging with a compressive-sensing double-pixel camera,” Phys. Rev. X3, 011013 (2013). [CrossRef]
  23. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems,” IEEE J. Sel. Topics Signal Process.1, 586–597 (2007). [CrossRef]
  24. D. Donoho and I. Johnstone, “Threshold selection for wavelet shrinkage of noisy data,” in Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE1994), 1A24–A25
  25. C. Li, W. Yin, and Y. Zhang, “TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” http://www.caam.rice.edu/~optimization/L1/TVAL3/ .
  26. Z. T. Harmony, R. F. Marcia, and R. F. Willett, “Sparse poisson intensity reconstruction algorithms” in Proceedings of the IEEE/SP 15th Workshop on Statistical Signal Processing (IEEE2009), pp 634–637.
  27. D. L. Donoho, A. Maleki, and A. Montanari, “The Noise- Sensitivity Phase Transition in Compressed Sensing”, IEEE Trans. Inf. Theory57, 6920 (2011). [CrossRef]
  28. V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” in Computer Vision - ECCV 2008 Lecture Notes in Computer Science (Springer, 2008) pp. 155–168. [CrossRef]
  29. O. S. Magaña-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett.102, 231104 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1142 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited