OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23907–23920

Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes

Yusheng Bian and Qihuang Gong  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23907-23920 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid plasmonic structure comprising a silicon slot waveguide separated from an inverse metal ridge by a thin low-index insulator gap is proposed and investigated. Owing to its symmetric hybrid configuration containing closely spaced silicon rails near the metal ridge, the fundamental symmetric hybrid slot mode supported by the structure is demonstrated to be capable of simultaneously achieving low propagation loss and subwavelength field confinement within a wide range of physical dimensions at the telecom wavelength. Comprehensive numerical investigations regarding the effects of key geometric parameters on the guided modes' properties, including the slot sizes, the shape and dimension of the silicon rails, the width of the gap region as well as the height of metallic nanoridge, have been conducted. It is revealed that the propagation distance of the symmetric mode can be more than several millimeters (even up to the centimeter range), while simultaneously achieving a subwavelength mode size and tight field confinement inside the gap region. In addition to the studies on the modal characteristics, excitation strategies of the guided hybrid modes and the conversion between dielectric slot and hybrid slot modes are also numerically demonstrated. The studied platform potentially combines the advantages of silicon slot and plasmonic structures, which might lay important groundwork for future hybrid integrated photonic components and circuits.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: July 26, 2013
Revised Manuscript: September 19, 2013
Manuscript Accepted: September 23, 2013
Published: September 30, 2013

Yusheng Bian and Qihuang Gong, "Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes," Opt. Express 21, 23907-23920 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lipson, “Guiding, modulating, and emitting light on silicon - Challenges and opportunities,” J. Lightwave Technol.23(12), 4222–4238 (2005). [CrossRef]
  2. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  3. Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett.29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  4. Y. Yue, L. Zhang, J. Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett.35(9), 1364–1366 (2010). [CrossRef] [PubMed]
  5. R. Ding, T. Baehr-Jones, W. J. Kim, X. G. Xiong, R. Bojko, J. M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in Silicon-on-Insulator,” Opt. Express18(24), 25061–25067 (2010). [CrossRef] [PubMed]
  6. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett.32(21), 3080–3082 (2007). [CrossRef] [PubMed]
  7. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express15(8), 4977–4993 (2007). [CrossRef] [PubMed]
  8. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009). [CrossRef]
  9. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009). [CrossRef] [PubMed]
  10. Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys.76(1), 016402 (2013). [CrossRef] [PubMed]
  11. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express18(11), 11791–11799 (2010). [CrossRef] [PubMed]
  12. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett.31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  13. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  14. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004). [CrossRef] [PubMed]
  15. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  16. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011). [CrossRef] [PubMed]
  17. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett.36(12), 2312–2314 (2011). [CrossRef] [PubMed]
  18. D. X. Dai, Y. C. Shi, S. L. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011). [CrossRef] [PubMed]
  19. L. F. Gao, L. X. Tang, F. F. Hu, R. M. Guo, X. J. Wang, and Z. P. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012). [CrossRef] [PubMed]
  20. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009). [CrossRef] [PubMed]
  21. M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010). [CrossRef] [PubMed]
  22. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010). [CrossRef]
  23. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express18(18), 18945–18959 (2010). [CrossRef] [PubMed]
  24. Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010). [CrossRef] [PubMed]
  25. Q. Li, Y. Song, G. Zhou, Y. K. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Opt. Lett.35(19), 3153–3155 (2010). [CrossRef] [PubMed]
  26. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011). [CrossRef]
  27. X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt.50(20), 3428–3434 (2011). [CrossRef] [PubMed]
  28. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett.37(1), 55–57 (2012). [CrossRef] [PubMed]
  29. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012). [CrossRef]
  30. F. Lou, Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012). [CrossRef]
  31. X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011). [CrossRef] [PubMed]
  32. C. G. Huang and L. Zhu, “Enhanced optical forces in 2D hybrid and plasmonic waveguides,” Opt. Lett.35(10), 1563–1565 (2010). [CrossRef] [PubMed]
  33. H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013). [CrossRef] [PubMed]
  34. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett.36(17), 3371–3373 (2011). [CrossRef] [PubMed]
  35. X. L. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express19(14), 12865–12872 (2011). [CrossRef] [PubMed]
  36. Y. Luo, M. Chamanzar, and A. Adibi, “Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure,” Opt. Express21(2), 1898–1910 (2013). [CrossRef] [PubMed]
  37. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett.21(6), 362–364 (2009). [CrossRef]
  38. Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013). [CrossRef]
  39. C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron.18(6), 1661–1668 (2012). [CrossRef]
  40. Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide,” Opt. Express17(22), 20327–20332 (2009). [CrossRef] [PubMed]
  41. H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010). [CrossRef]
  42. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low Index medium,” CLEO/QELS, paper JThD112 (2007).
  43. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  44. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010). [CrossRef]
  45. P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express18(20), 21013–21023 (2010). [CrossRef] [PubMed]
  46. D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt.49(36), 6868–6871 (2010). [CrossRef] [PubMed]
  47. D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express18(17), 17958–17966 (2010). [CrossRef] [PubMed]
  48. Y. S. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011). [CrossRef] [PubMed]
  49. Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express19(12), 11746–11752 (2011). [CrossRef] [PubMed]
  50. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  51. J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration,” IEEE Photon. Technol. Lett.23(4), 206–208 (2011). [CrossRef]
  52. J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Technol. Lett.23(20), 1481–1483 (2011). [CrossRef]
  53. M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express19(9), 8379–8393 (2011). [CrossRef] [PubMed]
  54. X. L. Zuo and Z. J. Sun, “Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate,” Opt. Lett.36(15), 2946–2948 (2011). [CrossRef] [PubMed]
  55. R. Hao, E. P. Li, and X. C. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett.37(14), 2934–2936 (2012). [CrossRef] [PubMed]
  56. Q. Huang, F. Bao, and S. He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express21(2), 1430–1439 (2013). [CrossRef] [PubMed]
  57. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011). [CrossRef]
  58. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010). [CrossRef] [PubMed]
  59. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009). [CrossRef] [PubMed]
  60. B. F. Yun, G. H. Hu, Y. Ji, and Y. P. Cui, “Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity,” J. Opt. Soc. Am. B26(10), 1924–1929 (2009). [CrossRef]
  61. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  62. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010). [CrossRef] [PubMed]
  63. L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol.30(1), 163–168 (2012). [CrossRef]
  64. G. X. Cai, M. Luo, Z. P. Cai, H. Y. Xu, and Q. H. Liu, “A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement,” IEEE Photon. J.4(3), 844–855 (2012). [CrossRef]
  65. Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012). [CrossRef]
  66. L. Chen, T. Zhang, X. Li, and W. P. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express20(18), 20535–20544 (2012). [CrossRef] [PubMed]
  67. T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics8(2), 1155–1168 (2013). [CrossRef]
  68. L. Chen, X. Li, and D. S. Gao, “An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform,” Appl. Phys. B111(1), 15–19 (2013). [CrossRef]
  69. J. Zhang, P. Zhao, E. Cassan, and X. Zhang, “Phase regeneration of phase-shift keying signals in highly nonlinear hybrid plasmonic waveguides,” Opt. Lett.38(6), 848–850 (2013). [CrossRef] [PubMed]
  70. Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.
  71. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008). [CrossRef]
  72. Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013). [CrossRef]
  73. Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013). [CrossRef]
  74. S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano6(9), 8128–8135 (2012). [CrossRef] [PubMed]
  75. Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B27(6), 1260–1265 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited